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Abstract
It is hard to generate an image at target view well for previous cross-view image

translation methods that directly adopt a simple encoder-decoder or U-Net structure,
especially for drastically different views and severe deformation cases. To ease this
problem, we propose a novel two-stage framework with a new Cascaded Cross MLP-
Mixer (CrossMLP) sub-network in the first stage and one refined pixel-level loss in
the second stage. In the first stage, the CrossMLP sub-network learns the latent trans-
formation cues between image code and semantic map code via our novel CrossMLP
blocks. Then the coarse results are generated progressively under the guidance of those
cues. Moreover, in the second stage, we design a refined pixel-level loss that eases
the noisy semantic label problem with more reasonable regularization in a more com-
pact fashion for better optimization. Extensive experimental results on Dayton [40]
and CVUSA [42] datasets show that our method can generate significantly better re-
sults than state-of-the-art methods. The source code and trained models are available at
https://github.com/Amazingren/CrossMLP.

1 Introduction
Cross-view image translation is a task that aims at synthesizing new images at the target view
from the source view. It has achieved lots of interest due to it can be applied to city scene
synthesis [48] and 3D object translation [44] from both the computer vision and virtual real-
ity communities [12, 19, 25, 29, 33, 38, 44, 47, 48, 50]. This task is usually investigated by
Convolutional Neural Networks (CNNs) based encoder-decoder structure [44, 48] or Gener-
ative Adversarial Networks (GANs) based methods [25]. However, these methods were all
designed to generate new view images that share a degree of overlap on both appearances
and geometry information with the original ones. Unlike previous methods mentioned above,
Regmi et al. [29] proposed a conditional GAN which jointly learns the generation in both the
image domain and its corresponding semantic domain, and the semantic predictions are fur-
ther utilized to supervise the image generation. To further improve the performance, Tang et
al. [33] proposed SelectionGAN, a coarse-to-fine method which built on three complicated
U-Net generators and a selection module.
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Figure 1: Overview of the proposed Cascaded Cross MLP-Mixer GANs.

Although these two methods performed interesting explorations, we observe that there
are three main factors that can account for the reason why the quality of their generated im-
ages is still far from satisfactory. Firstly, previous methods generate the target view image
just in an one-shot manner directly, which ignores some important details during the transla-
tion. Secondly, the interaction between the source view image and the target view semantic
map lacks a deep exploration since it is critical for a model to learn a precise mapping pat-
tern, especially for the case that there is a drastic gap between source view and target view in
both appearance and geometry. Thirdly, the inevitable noisy semantic label problem needs
to be further addressed since it will mislead the image generation because the semantic la-
bel maps are not accurate enough for all the pixels when they are usually produced from
pretrained semantic models.

To this end, we propose a two-stage framework with a novel Cascaded Cross MLP-Mixer
(CrossMLP for short) sub-network in the first stage (see Figure 1) and a refined pixel-level
loss in the seond stage. Within the CrossMLP sub-network, we stack several novel Cross
MLP-Mixer (CrossMLP) blocks to produce a coarse image and a coarse semantic map at
target view. This procedure is just like a human drawer is painting a picture [9], progres-
sively. What’s more, to dig out the latent translation cues between the source view image
and the target view semantic map, we design the CrossMLP module (see Figure 2) within
each CrossMLP block in the generator of a GAN. It interactively model the mutual latent
long-range dependencies which consist of both the appearance and the structure information
within each view, and the latent correspondences between two inputs can also be captured
via its two consecutive multi-layer perceptrons (MLP). Then the latent cues are used to guide
the transformation from source view to target view.

In the second stage, we propose the refined pixel-level loss. On one hand, it can ease
the noisy semantic label problem by more reasonable regularization to the overall optimiza-
tion loss. On the other hand, the formulation of our refined pixel-level loss becomes more
compact with lower redundancy. Consequently, the generated images at target views become
more realistic. Finally, extensive experimental results demonstrate that our method achieves
new state-of-the-art results on both Dayton [40] and CVUSA [42] datasets.

The contributions of this paper are summarized as follows,
• We propose a two-stage framework that can progressively generate the target view

image via the proposed CrossMLP blocks. To the best of our knowledge, the proposed
model is the first MLP-based cross-view image translation framework.

• We propose a novel CrossMLP module to dig out the latent mapping cues between the
source view image and the target view semantic map. The latent cues can guide the
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cross-view translation with better geometry structure and appearance information.
• We propose a refined pixel-level loss, which can reduce the redundancy of loss items

and ease the noisy semantic label problem in the cross-view translation task.
• Extensive experiments demonstrate the effectiveness of our method and show new

state-of-the-art results on most of the evaluation metrics for both datasets.

2 Related Work
Generative Adversarial Networks (GANs). As one of the most used techniques of the gen-
erative model, GANs are a unique approach for learning desired data distribution to generate
new samples [8]. Generally, there is a generator with a discriminator that exists in GANs.
The former tries to produce photo-realistic target images to fool the latter, while the latter
tries its best to figure out whether a sample is real or fake. Though lots of works have shown
their capability in generating realistic-looking images [1, 16, 31], it is still challenging for
vanilla GANs to produce images in a controlled manner. As an extension solution to this
problem, conditional GANs (CGANs) are proposed by incorporating conditional informa-
tion [8] such as class labels [6, 41, 46], attention maps [18, 37], human skeleton [34, 35, 51],
and semantic maps [21, 22, 26, 32, 36]. In this paper, our work focuses on cross-view image
generation with semantic maps as conditional information.
Image-to-Image Translation aims to learn a parametric mapping between input and output
data. Isola et al. realized this by its supervised Pix2pix method to learn a translation function
between input and results based on CGANs. Zhu et al. [49] introduced CycleGAN, which
using the cycle-consistency loss to solve the unpaired image translation problem. In addition,
there are lots of works like [2, 23, 24, 43] that all adopted attention mechanism to improve
the generation performance. Moreover, based on the self-attention strategy, Transformer
based methods have become popular relied on their ability for modeling global long-range
dependencies in vision tasks compared to conventional CNN methods recently [14, 30].
However, due to Transformer is built on the self-attention mechanism, when the size of the
feature map increases, the computing and memory overheads increase quadratically. To ease
this problem, inspired by MLP-Mixer [39] which closely resembles the Transformer model
in an efficient way and has shown its powerful ability on discriminative vision tasks [5]. We
propose the novel CrossMLP in this paper which is based entirely on multi-layer perceptrons
(MLPs) for both spatial locations and feature channels module to address the generative task.
Therefore it can model the long-range dependencies via a more simple alternative in GAN.
Cross-View Transformation. Most existing works on cross-view transformation mainly fo-
cuse on synthesizing novel views of the same object, such as chairs, tables, or cars [3, 4, 38].
Another group of works [45, 48] explore the cross-view scene image translation problem in
which there exists a large degree of overlapping in both appearances and geometry structures.
However, when facing the drastically different view and severe formation cases which in-
volve huge geometry mismatch, large-scale uncertainty, and obvious appearance difference,
it’s really challenging for existing methods. Zhai et al. [47] firstly proposed a CNN-based
network for generating panoramic ground-level images from aerial images at the location.
Krishna et al. [29] proposed a GAN-based structure X-Fork and an X-Seq to address the
aerial to street-view image translation via an extra semantic segmentation map. To improve
the performance, Tang et al. [33] proposed SelectionGAN, a coarse-to-fine framework based
on three U-Net generators and a Selection module. However, nearly all the methods men-
tioned above generate the results in a hard one-shot way, the final generated results are still
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far from satisfactory due to the drastic difference between source and target views. Hence,
we propose a novel progressive generation fashion via several cascaded CrossMLP blocks
for this task. This strategy allows our method can interactively produce complex images at
target view with much better generation quality step by step.

3 Cascaded Cross MLP-Mixer GANs

3.1 Overview
Notations. The overall structure of the proposed Cascaded Cross MLP-Mixer GAN is de-
picted in Figure 1. There are two stages in this framework. The first one takes as input both
one image Ia at source view and one semantic map Sg at the target view, aiming to progres-
sively produce a coarse image I

′
g at target view, a coarse target semantic map S

′
g, and a feature

map Fb which contains the latent transformation cues between Ia and Sg. The second stage
firstly takes Fc, a combination feature originated from Ia, I

′
g, S

′
g, and Fb, as input. Then Fc is

sent to the selection module proposed by Tang et al. [33], note that this module is just used
for producing the final cross-view image I

′′
g and uncertainty maps U to multiple optimiza-

tion losses, which is our secondary focus. Moreover, I
′′
g is pass through Gs, a U-net based

structure, for recovering a more detailed semantic map S
′′
g. Finally, all image related items

are used to construct the refined pixel-level image loss Lg while all semantic maps related
items are used to construct the refined pixel-level semantic map loss Ls, through which a
more fine-grained synthesized cross-view image can be produced.
Encoder and Decoder. As shown in Figure 1, the input image Ia from the source view
and the semantic map Sg from one target view are firstly encoded by two similar feature
extraction encoders that consist of N down-sampling convolutional layers (N=2 in our case).
On the output side of our proposed cascaded MLP-Mixer generation, both the coarse output
image I

′
g and the coarse output semantic map S

′
g at the target view are recovered by two

similar decoders from feature F I
T and FS

T via N deconvolutional layers. What’s more, for the
intermediate feature map Fb, we recover it from FS

T only via N/2 deconvolutional layers.

3.2 Cascaded Cross MLP-Mixer Sub-Network
As the core of the generator in the first stage, the cascaded cross MLP-Mixer sub-network
is consisting of several CrossMLP blocks shown in Figure 1. Starting from the initial image
code F I

0 and semantic map code FS
0 . The CrossMLP sub-network progressively updates

these two codes through a sequence of CrossMLP blocks. Then the final image code F I
T is

taken to decode the coarse output image I
′
g at target view. While the final semantic code

FS
T is token to decode for both the feature map Fb and the semantic map S

′
g. All CrossMLP

blocks have identical structures, and each carries out one step of update. Consider the t-
th block depicted in Figure 2, whose inputs are F I

t−1 and FS
t−1. Each block comprises two

pathways, called the image pathway and the semantic map pathway. With deep interactions
via CrossMLP module, these two pathways update F I

t−1 and FS
t−1 to F I

t and FS
t , respectively.

In the following, we describe the detailed update process in three parts and justify their
designs.
CrossMLP Module. From a basic level, the cross-view image translation is to moving
patches from the location induced by the source view image to the location induced by the
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Figure 2: Architecture of the proposed Cross MLP-Mixer block.

target view semantic map. So how to let the translation knows the latent cues that where to
sample source patches and where to put target patches is extremely significant. Therefore,
we design the novel CrossMLP module for modeling the global long-range relation between
source view image code and target view semantic map code to realize such cues.

Modern deep vision architectures generally consist of layers that mix features (i) at a
given spatial location, (ii) between different spatial locations, or both at once [39]. CNNs
realize this via their convolutional kernels and larger kernels can perform both. In Vision
Transformers or other attention-based architecture, self-attention layers allow both (i) and
(ii). Inspired by [39], we design the CrossMLP architecture which firstly conducts cross-
location (token-mixing) operations (ii) for one kind of information only, then conduct per-
location (channel-mixing) operations (i) for both kinds of information. Note both (i) and (ii)
are implemented with only MLPs in our CrossMLP and we summarize the architecture of
our CrossMLP module in Figure 2.

Specifically, given two input features F I
t−1 and FS

t−1 with spatial shape H ×W ( H and
W indicate the height and width of a given feature). Both of them are firstly embedded to a
sequence of S non-overlapping feature map patches (S = HW/P2, P is the patch size) and
each one is projected to a desired hidden dimension C for generating the 2D real-valued input
table XI∈RS×C and XS∈RS×C. Each CrossMLP consists of 7 layers and each layer consist of
two MLP blocks. The first one is the token-mixing MLP while another is the channel-mixing
MLP. The former acts on columns of XI and XS, which is similar to the original MLP-Mixer
proposed by Tolstikhin et al. [39] as follows:

U I
∗,i = X I

∗,i +W I
2 σ(W I

1 LayerNorm(X I)∗,i), f or i = 1, · · · ,C
US
∗,i = XS

∗,i +W S
2 σ(W S

1 LayerNorm(XS)∗.i), f or i = 1, · · · ,C
(1)

The latter is shared across all rows but accompanied with another code by addition in a
mutually cross interactive manner shown in Figure 2. This operation can be described as
follows:

Y I
j,∗ =U I

j,∗+W I
4 σ(W I

3 LayerNorm(U I +US) j,∗), f or j = 1, · · · ,S

Y S
j,∗ =US

j,∗+W S
4 σ(W S

3 LayerNorm(US +U I) j.∗), f or j = 1, · · · ,S
(2)

Here σ means element-wise nonlinearity (GELU [11]), W indicates the linear learnable
weight of MLP. Based on this fashion, each kind of the information will be processed by
one MLP layer along with the columns first, then each processed information accompanied
with another information will be further strengthened mutually by the second MLP layer
along with the rows.
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Image Pathway Update. After we get the latent cues Y I and Y S about where to sample
source patches and where to put patches. We design the image pathway update to let the
cues guide the coarse image generation. Firstly, both Y I and Y S will be recovered from
sequence shape S×C to the image shape H×W , then a concatenation operation is adopted
to combine them together. These steps can be depicted as follows:

Y = cat(reshape(Y I),reshape(Y S)). (3)

Then Y is transferred to an attention map denoted as MAtt , which incorporates both the image
code at source view and semantic map code at target view. The value of MAtt is in the range
of (0,1) and indicates the importance of every element in the image code. Mathematically:

MAtt = Sigmoid(Conv(Y )), (4)

where Conv is a convolutional layer with kernel size 1× 1 to fully exchange information
among channels. Sigmoid here is to map the value after the convolutional layer to the range
of (0,1). Finally, we update the image code as follows:

F I
t = F I

t−1 +MAtt ⊗Conv(Ft−1), (5)

where ⊗ denotes element-wise multiplication, which ensures image code F I
t at one certain

location are either preserved or suppressed. Moreover, the addition to F I
t−1 constructs a

residual connection [10] helps preserve the original image appearance information. It is
critical especially when the number of the CrossMLP block goes higher.
Semantic Map Pathway Update. To make the semantic map code can match the updated
image code at the same feature level, we adopt channel-wise concatenation between F I

t and
Y as follows:

FS
t = cat(F I

t ,Y ). (6)

By doing so, both image code and semantic map code are activated mutually for generating
more detailed images at the target view.

3.3 Refined Pixel-level Loss
This noisy semantic label problem has been investigated in [17], and it showed that weighing
multiple loss functions by considering the uncertainty of each task can add regularization to
the overall optimization objectives. This strategy was also adopted by SelectionGAN [33],
which constructed 4 "tasks" with 4 fake-real pairs forming the uncertainty-guided pixel-level
loss Lp to overcome this problem as follows:

Lp←
Lp(Fake,Real)

U
+ logU =

|Fake−Real|
U

+ logU, (7)

where Lp denotes a pixel-level loss and U denotes the relevant uncertainty map. Fake and
Real indicate generated results and ground truth items. We notice that in the SelectionGAN
[33], it need to compute the original pixel-level lossLp 4 times for 4 (Fake,Real) pairs, there
are (I

′
g, Ig), (I

′′
g , Ig), (S

′
g,Sg), and (S

′′
g,Sg). We argue this approach is complicated and redun-

dant. Moreover, it ignores the relation between generated image pair (I
′
g, I
′′
g ) and semantic

map pair (S
′
g,S

′′
g).
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Hence, we grouped these 4 fake-real pairs into 2 kinds based on whether the pair is image
related or semantic map related. This makes the form of the loss become more compact than
the one used in [33]. In addition, we add a new square item to constraint the difference
between generated items for both stages. The refined pixel-level loss for both Lg and Ls
share the same form as :

Lp←
|Fake

′ −Real|+ |Fake
′′ −Real|

U
+ logU +(Fake

′ −Fake
′′
)2, (8)

The first item of our refined loss can reduce the distance between generated and the ground
truth images for both stages at once, while the third square item further strengthen the con-
sistency between the generated results from both stages.

3.4 Model Training
Parameter-Sharing Discriminator. We extend the vanilla discriminator original in [13] to
another parameter-sharing structure. In the first stage, this structure takes the real image Ia
and the generated image I

′
g or the ground-truth image Ig as input. The discriminator D learns

to tell whether a pair of images from different domains is associated with each other or not.
In the second stage, it accepts the real image Ia and the generated image I

′′
g or the real image

Ig as input. This pairwise input encourages D to discriminate the diversity of image structure
and capture the local-aware information.
Overall Optimization Objective. The total optimization loss is as:

min
{Gi,Gs,Ga}

max
{D}
L=

2

∑
i=1

λiLi
p +LcGAN +λtvLtv, (9)

where Li
p indicate our proposed refined pixel-level loss for both image and semantic map

information, LcGAN is the classic adversarial loss as follows:

LcGAN

(
Ia, I

(·)
g

)
=E

Ia,I
(·)
g
[logD(Ia, Ig)]+E

Ia,I
(·)
g

[
log
(

1−D
(

Ia, I
(·)
g

))]
, (10)

where I(·)g means both the result I
′
g from the first stage and I

′
g from the second stage share the

same adversarial loss. Ltv is the total variation regularization [15] on the I
′′
g as follows:

Ltv(I
′′
g ) = ∑

m,n

∣∣∣I ′′g[m+1,n]− I
′′
g[m,n]

∣∣∣+ ∣∣∣I ′′g[m,n+1]− I
′′
g[m,n]

∣∣∣ , (11)

where m and n indicate the coordinate of the pixels of I
′′
g . λi and λtv are the trade-off param-

eters to control the relative importance of different objectives, and they are set to 0.5 and 1,
respectively. The training is performed by solving the min-max optimization problem.
Implementation Details. Besides the proposed cascaded CrossMLP sub-network, we also
utilize the selection module proposed in [33]. In addition, Gs is a shallow U-Net [13] archi-
tecture based generator and the filters in the first convolutional layer is set to 3. What’s more,
We adopt PatchGAN [13] for the discriminator D. About the training details, we follow the
optimization method in [8] to optimize the proposed Cascaded Cross MLP-Mixer GAN, i.e.,
one gradient descent step on discriminator and generators alternately. We first train cascaded
CrossMLP sub-network, selection module, and Gs with D fixed, and then train D with others
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Table 1: Quantitative comparisons on the Dayton dataset.
Method

Accuracy (%) ↑ Inception Score ↑
SSIM ↑ PSNR ↑ SD ↑ KL ↓

Top-1 Top-5 all Top-1 Top-5
Pix2pix [13] 6.80∗ 9.15∗ 23.55∗ 27.00∗ 2.8515∗ 1.9342∗ 2.9083∗ 0.4180∗ 17.6291∗ 19.2821∗ 38.26 ± 1.88∗

X-Fork [29] 30.00∗ 48.68∗ 61.57∗ 78.84∗ 3.0720∗ 2.2402∗ 3.0932∗ 0.4963∗ 19.8928∗ 19.4533∗ 6.00 ± 1.28∗

X-Seq [29] 30.16∗ 49.85∗ 62.59∗ 80.70∗ 2.7384∗ 2.1304∗ 2.7674∗ 0.5031∗ 20.2803∗ 19.5258∗ 5.93 ± 1.32∗

SelectionGAN [33] 42.11† 68.12† 77.74† 92.89† 3.0613† 2.2707† 3.1336† 0.5938† 23.8874† 20.0174† 2.74 ± 0.86†

CrossMLP (Ours) 47.65 78.59 80.04 94.64 3.3466 2.2941 3.3783 0.5599 23.6232 19.6688 2.33 ± 0.80
Real Data - - - - 3.7196† 2.3626† 3.8998† - - - -

Table 2: Quantitative comparisons on the CVUSA dataset.
Method

Accuracy (%) ↑ Inception Score ↑
SSIM ↑ PSNR ↑ SD ↑ KL ↓

Top-1 Top-5 all Top-1 Top-5
Pix2pix [13] 7.33∗ 9.25∗ 25.81∗ 32.67∗ 3.2771∗ 2.2219∗ 3.4312∗ 0.3923∗ 17.6578∗ 18.5239∗ 59.81 ± 2.12∗

X-Fork [29] 20.58∗ 31.24∗ 50.51∗ 63.66∗ 3.4432∗ 2.5447∗ 3.5567∗ 0.4356∗ 19.0509∗ 18.6706∗ 11.71 ± 1.55∗

X-Seq [29] 15.98∗ 24.14∗ 42.91∗ 54.41∗ 3.8151∗ 2.6738∗ 4.0077∗ 0.4231∗ 18.8067∗ 18.4378∗ 15.52 ± 1.73∗

SelectionGAN [33] 41.52† 65.51† 74.32† 89.66† 3.8074† 2.7181† 3.9197† 0.5323† 23.1466† 19.6100† 2.96 ± 0.97†

CrossMLP (Ours) 44.96 69.96 76.98 91.91 3.8392 2.8035 3.9757 0.5251 23.1532 19.5799 2.69 ± 0.94
Real Data - - - - 4.8741† 3.2959† 4.9943† - - - -

fixed. Our method is trained and optimized in an end-to-end fashion. We employ Adam
[20] with momentum terms β1=0.5 and β2=0.999 as our solver. The initial learning rate
for Adam is 0.0002. The network initialization strategy is Xavier [7], weights are initialized
from a Gaussian distribution with standard deviation 0.2 and mean 0.

4 Experiments
Datasets. We perform all experiments on two datasets: (i) For the Dayton dataset [40],
we follow the same setting of [29] and select 76,048 images and create a train/test split of
55,000/21,048 pairs. And we reset the resolution to 256×256; (ii) The CVUSA dataset [42]
consists of 35,532/8,884 train/test image pairs. Following [29, 47], the aerial images are
center-cropped to 224× 224 and resized to 256× 256. For the ground-level images and
corresponding segmentation maps, we also resize them to 256×256.
Parameter Settings. For a fair comparison, we adopt the same training setup as in [13, 29,
33] for both datasets. All images are scaled to 256×256, and we enabled image flipping and
random crops for data augmentation. Similar to [29], our method on the Dayton dataset is
trained for 35 epochs. For the CVUSA dataset, we follow the same setup as in [29, 47], and
train our network for 30 epochs. Our method is implemented in PyTorch [27].
Evaluation Metrics. Inception Score, top-k prediction accuracy, and KL score are employed
for the quantitative analysis. These metrics evaluate the generated images from a high-level
feature space. We also employ Structural-Similarity (SSIM), Peak Signal-to-Noise Ratio
(PSNR), and Sharpness Difference (SD) to measure the pixel-level similarity.

4.1 State-of-the-Art Comparisons
We compare our Cascaded Cross-Mixer GAN with four state-of-the-art methods Pix2pix [13],
X-Fork [29], X-Seq [29], and SelectionGAN [33] both quantitatively and qualitative.
Quantitative Comparisons. The results are shown in Tables 1 and 2. Note that (∗, †) means
these results are reported in [29] and [33]. We can see the significant improvement of our
method in both tables compared to other state-of-the-art methods on most of the metrics.
Note that for metrics like SSIM, PSNR, and SD, our method also achieve the second-best
results with only a bit lower on both datasets. However, the qualitative results presented in
Figure 3 show our method can generate more realistic and sharper results than others.
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Figure 3: Qualitative results of different methods on (a) Dayton and (b) CVUSA datasets.

Qualitative Comparisons. The qualitative results on both Dayton and CVUSA datasets are
shown in Figure 3. It’s clear that the proposed Cascaded Cross-Mixer GAN can generate
clearer and sharper scenes with more details but fewer artifacts on trees (see the first row in
Figure 3), clouds, roads(see the first and the fifth rows in Figure 3), shadows (see the third
row Figure 3), sky (see the second and sixth rows in Figure 3), than other methods.

4.2 Ablation Analysis

To reduce the training time, we randomly select 1/3 samples from the whole Dayton dataset
to form the ablation study dataset Dayton-Ablation with around 18,334/7,017 samples. We
design five baselines (B1, B2, B3, B4, B5) as shown in Table 3 and Table 4. The first four
baselines are used to figure out how the number of CrossMLP blocks affects the experimen-
tal results without the proposed refined loss. They use 3, 5, 7, and 9 blocks, respectively.
The last one B5 is built on B4, but with our refined pixel-level loss for optimization during
training. All the baseline models are trained and tested by the same configuration settings.

From the numerical results presented in Table 3. We conclude that with the increase of
the number of cascaded CrossMLP blocks, the performance is also improved. What’s more,
from the comparison between B4 and B5 in Table 4, it’s clear that the refined pixel-level loss
can boosts the numerical results obviously. We also provide more intuitive visual results in
our supplementary materials. To further validate the effectiveness of the proposed refined
pixel-level loss, another ablation experiment is conducted based on SelectionGAN [33], and
results presented in Table 4 show that SelectionGAN can achieve much better performance
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Table 3: Ablation results on the Dayton-Ablation dataset.

Method
Accuracy (%) ↑ Inception Score ↑

KL ↓
Top-1 Top-5 all Top-1 Top-5

B1 (3 Blocks) 43.68 72.84 74.58 91.23 3.2513 2.2051 3.2501 2.950 ± 0.90
B2 (5 Blocks) 44.35 73.40 77.21 91.60 3.1825 2.1625 3.1889 2.803 ± 0.93
B3 (7 Blocks) 42.58 70.67 74.85 90.77 3.2988 2.2190 3.3317 2.878 ± 0.91
B4 (9 Blocks) 43.41 70.73 76.84 91.77 3.3241 2.2570 3.3340 2.725 ± 0.87

Real Data - - - - 3.8246 2.5668 3.9119 -

Table 4: Quantitative comparisons on the Dayton-Ablation dataset to validate the effective-
ness of our proposed refined pixel-level loss.

Method
Accuracy (%) ↑ Inception Score ↑

SSIM ↑ PSNR ↑ SD ↑ KL ↓
Top-1 Top-5 all Top-1 Top-5

B4 43.41 70.73 76.84 91.77 3.3241 2.2570 3.3340 0.4814 21.0154 19.1099 2.725 ± 0.87
B5 (B4 + Our Loss) 44.08 73.46 76.44 92.28 3.4140 2.3197 3.4444 0.5515 22.9443 19.5192 2.699 ± 0.90

B5 + BAM [28] 42.51 72.96 72.35 89.86 3.2756 2.1811 3.2703 0.5451 22.7198 19.4813 3.130 ± 1.03
SelectionGAN [33] 41.60 71.21 75.20 92.01 3.2252 2.2387 3.2459 0.4952 21.1408 19.3979 2.852 ± 0.93

[33] + Our Loss 42.75 71.47 75.70 92.39 3.2664 2.3101 3.2909 0.5442 21.1408 19.6984 2.704 ± 0.82
Real Data - - - - 3.8246 2.5668 3.9119 - - - -

on all the evaluation metrics with our proposed refined loss.
In addition, Qiu et al. [28] also proposed a MLP based bilateral augmentation module

(BAM) which is depicted somewhat similar to our CrossMLP module. Actually, they are
totally different. Compared to our CrossMLP module, (1) For each module of BAM, only
one input is from previous module and another is always the original 3D coordinates; (2) All
MLP operations in BAM are in the channel-wise manner; (3) The cross interaction is realised
by concatenation operation for two feature at different semantic level. Most importantly, we
replace the CrossMLP module with the BAM (with slight modification to make it suitable
for the data of our task) to see if it can achieve better performance based on B5. The results
in Table 4 shows that our CrossMLP can outperform BAM by a large margin in all evaluation
metrics. Hence we conclude the proposed CrossMLP module is more suitable and effective
for the drastic cross-view image translation task.

5 Conclusion

We propose a novel two-stage Cascaded Cross MLP-Mixer GAN to progressively address
the challenging cross-view image translation task, particularly when there exits little or no
overlap between source view and target view. In particular, our method can generate more
detailed coarse results step by step in the first stage via our proposed cascaded CrossMLP
blocks. What’s more, within each block, the latent transformation cues can be well estab-
lished by the CrossMLP module. Then the cross-view translation operation will be guided
by those latent cues with better visual quality. In addition, we propose a refined pixel-level
loss which can provide a further constraint between the coarse and final result images with a
more compact formulation fashion, the inaccurate semantic labels problem can be also eased
for better optimization with more reasonable regularization within the overall optimization
objective. Extensive experimental results on two public datasets demonstrate that our method
obtains much better results than the state-of-the-art.
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