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Abstract

Observing a video stream and being able to predict target events of interest before they
occur is an important but challenging task due to the stochastic nature of visual events.
This task requires a classifier that can separate the precursory signals that lead to the events
and the ones that do not. However, a naïve approach for training this classifier would
require seeing many examples of the target events before a model with high precision
can be obtained. In this paper, we propose a method for early prediction of visual events
based on an ensemble of exemplar predictors. Each exemplar predictor is associated
with an instance of the target event, being trained to separate the target event from
negative samples. The exemplar predictors can be calibrated and integrated to create a
stronger predictor. Experiments on several datasets show that the proposed exemplar-based
framework outperforms other methods, yielding higher precision given fewer training
samples. Our code and datasets can be found at github.com/cvlab-stonybrook/EnEx.

1 Introduction
Being able to monitor a video stream and forecast an event of interest before it happens is
profound capability that has numerous applications in a wide range of fields, ranging from
entertainment and education to healthcare and security. For example, the ability to predict
illicit events at retail stores, such as shoplifting and vandalism, will enable prevention and
quick response, minimizing damages and improving security. In this paper, we aim for an
algorithmic framework that will turn a video camera into a predictor that continually improves
its performance based on delayed self-supervision signals. We focus on scenarios where the
camera can observe the same type of scene for an extended period of time and visual events
from a target category of interest occur infrequently but repeatedly.

In general, it is difficult to predict visual events due to the stochastic nature of visual data
and the limited field of view of the camera. An event can be predicted in advance only if there
is some precursory evidence and that evidence can be detected. However, many visual events,
such as picking up a phone or opening a door, might occur without any prior visual indication.
Even when prior visual indication does exist, it might not be observable or detectable from
the perspective of the camera.

The difficulties of predicting visual events can be seen from the training perspective. Let
us refer to a video segment that precedes a target event of interest as pre-positive, and a video
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segment that is not followed by a target event as pre-negative. For early prediction, we need
to distinguish pre-positive video segments from pre-negative ones. To do so, we can collect
the previously observed pre-positive and pre-negative video segments and train a classifier to
separate these two sets. However, visual data is highly stochastic and visual events can occur
without any prior indication. Many pre-positive video segments are similar or even identical
to pre-negative segments, and for a naïve approach, much of the training effort would be
wasted on the failed attempt to separate the non-separable, and it will take many examples to
identify the predictable patterns.

The premise of our work is that not all target events can be predicted, but many can be
predicted with a high level of certainty. Instead of aiming to predict everything and ending up
with a predictor that is not confident about anything, we propose to focus on identifying and
detecting the precursory patterns that will surely lead to a target event. In other words, we
should prioritize high precision over high recall. Having a predictor with high precision is
very important for many applications, especially when it is much more likely for the target
event not to happen and early prediction is only meaningful when the event does happen.

We develop here a non-parametric method for visual event prediction based on an en-
semble of exemplar classifiers. Each exemplar classifier is obtained by training a classifier
to separate a single pre-positive video segment from many pre-negatives. Each exemplar
classifier is like a local distance function that is discriminatively trained, representing a
candidate precursory pattern that should be monitored. Our approach does not suffer from
the drawbacks of parametric classifiers, which treat all pre-positive segments as a whole,
implicitly assuming that pre-positive segments are visually related and separable from the
pre-negatives.

Our work is inspired by the success of previous exemplar models used for image classifi-
cation [59], object segmentation [27], object detection [7, 28], and action recognition [57].
The philosophy of our work is also similar to local learning [2] and local distances [13, 14].
Our work is most similar to the object detection framework of [28], where they also train a
set of exemplar SVMs, one for each positive example. Their approach, however, is inefficient
for continual learning, which is an issue that we address in this paper. Moreover, we propose
a more robust approach for calibrating and combining multiple exemplar classifiers.

Experimental results on multiple visual events show that the proposed method outperforms
both parametric baseline predictors and other exemplar based methods in terms of prediction
precision. The proposed method is faster to train and more robust to the noisy training data.

2 Related Work
We propose a framework that can directly forecast high-level semantic properties of events,
unlike methods for predicting mid-level features [34, 41, 45, 46] or low-level feature maps
such as raw video frames [25, 30, 51, 54], optical flow maps [17, 47]), segmentation maps [26],
dynamic images [36], and human poses [12, 24, 43, 48, 49, 50]. There are methods for
recognizing partial human actions by training frame-based classifiers [10, 29, 38, 58] or
segment-based classifiers [20, 21, 35, 37, 49], but these methods are for early recognition not
early prediction. More recently, many end-to-end neural network based methods are proposed
for early recognition or anticipation [1, 11, 15, 16, 40], but they rely on large offline datasets
with high-quality and dense annotation to learn good video representation and classifiers.
None of the aforementioned works are designed for self-supervised continual learning, where
target events happen infrequently. They do not consider the difficulties of separating the
non-separable and they do not aim for a predictor with high precision.
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Figure 1: Prediction task: Our goal is to have a predictor f that analyzes information in time
[t− l, t] to predict if a target event will occur between t+τ1 and t+τ2.

One might assume the sequence of video frames or events as a Markov process and
use methods such as Hidden Markov Models [33] for prediction. This is the framework of
many existing prediction methods such as [6, 9, 31, 39], but this approach is not suitable for
early prediction of high-level visual events for two reasons. First, visual events are complex
and do not usually satisfy the Markov property. Second, to model a video with a Markov
process, we need to specify a state space, and this approach is only appropriate if the states
are what we aim to predict. Similarly, time series forecasting techniques, such as ARMA [53]
and ARIMA [3], can be used for forecasting future observation values. These methods
are appropriate if we are interested in predicting raw observation values such as the Dow
Jones Utilities Index [4]. However, knowing raw observation values is not enough to predict
high-level semantic events. Of course, forecasting the future observations may be a good
first step for prediction, but this two-stage approach has a disadvantage because the former is
usually more difficult than the latter.

3 Framework Description
We envision a self-supervised learning framework that will turn a video camera into a predictor
that continually improves its performance based on delayed self-supervised signals. Once
an event has been retrospectively detected, the predictor will be improved based on whether
the predictor has predicted it correctly. The core of our framework is a predictor that can
predict with lead time duration [τ1,τ2]. At time t, the predictor analyzes the video sequence
up until t and predicts whether an event of interest will occur between times t + τ1 and t + τ2,
inclusively. Let vt be the feature representation for the video segment in time [t− l, t], where
l is the length of the input window. τ1, τ2 and l are all problem-specific parameters, and
0 < τ1 ≤ τ2. Let yt be the binary variable that indicates whether the event of interest occurs
between t− (τ2− τ1) and t. We assume that yt will be known at time t, but our goal at time t
is to predict yt+τ2 , as illustrated in Figure 1.

Suppose we can keep collecting labeled training examples from our past observations. At
time t, the accumulated set of labeled training examples is {(vi,yi+τ2)|i = 1, . . . , t− τ2}. In
general, there are not many positive examples, and let P = {z1, . . . ,zp} denote this subset.
On the other hand, there are many negative samples, and we do not need to use all of them
for training. We will sample two disjoint subsets of negative examples N = {x1, . . . ,xn} and
N h = {xh

1, . . . ,x
h
n}. The former will be used for training the exemplar predictors, while the

latter will be used for calibration. The training and calibration of the exemplar predictors will
be explained in details below.

In this section, we describe our method for early prediction based on an ensemble of
exemplar predictors. Each exemplar predictor fz(·) is obtained by training a classifier to
separate a single pre-positive video segment z from many pre-negatives. We propose a novel
formulation to efficiently train multiple exemplar classifiers together, making it suitable for
continual learning. We also propose a novel approach for calibrating and combining the
exemplar classifiers using rank pooling to create a stronger predictor.

Notation. We will use bold uppercase letters to denote matrices (e.g., D), bold lowercase
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letters to denote column vectors (e.g., d,α). d j represents the jth column of the matrix D,
while d j is the jth element of the column vector d. di j denotes the scalar in the row i and
column j of the matrix D and the ith element of the column vector d j. Non-bold letters
represent scalar variables. 1n ∈Rn is a column vector of ones. In ∈Rn×n is an identity matrix.

3.1 Exemplar predictor for a positive example
Given a particular positive example z ∈ P and the set of N = {x1, . . . ,xn} of negative
examples, we propose to learn the exemplar predictor based on Kernel Ridge Regression [42].
Specifically, we consider the RBF kernel: k(x,x′) = exp(−γ||x−x′||22), where γ is set to the
inverse of the average squared distance between elements ofP andN . Let φ(x) be the implicit
feature function that maps a data point x to the feature space. For the exemplar predictor,
we will learn a weight vector w and a bias term so that: wT φ(z)+ b = 1 and wT φ(xi)+
b ≈ 0. We can learn w and b as an optimization: minimizew,b λ ||w||2 +∑

n
i=1(wT φ(xi)+

b)2,s.t. wT φ(z)+b = 1, where λ is a regularization parameter. From the constraint, we have
b = 1−wT φ(z) and the objective is equivalent to:

minimize
w

λ ||w||2 +
n

∑
i=1

(1−wT (φ(z)−φ(xi)))
2. (1)

Let li = φ(z)−φ(xi) and L = [l1, . . . , ln]. The solution of the above optimization problem
can be found by setting the derivative to zero: w = (LLT +λ In)

−1L1n. On the other hand,
we have (LLT +λ In)L = L(LT L+λ In), then L(LLT +λ In)

−1 = (LLT +λ In)
−1L. So we

must have w = L(LLT +λ In)
−11n. Thus the weight vector has the form w = Lα , where

α = (LLT +λ In)
−11n. In practice, there is no need to explicitly recover w. It is sufficient to

solve for α , and the decision value for any data point q can be calculated:

fz(q) = wT
φ(q)+b =

n

∑
i=1

αi(k(z,q)− k(xi,q)− k(z,z)+ k(xi,z))+1. (2)

3.2 Efficient training of multiple predictors
For a single exemplar predictor, we need to find α using: α = C−11n, where C = LT L+λ I.
Let K be the n×n kernel matrix with ki j = k(xi,x j). Let kz = [k(x1,z), . . . ,k(xn,z)]T . We
have C = LT L+ λ In = K− kz1T

n − 1T
n kz + k(z,z) + λ In. Since we use an RBF kernel,

k(z,z) = 1. Let A = K + 1 + λ In and B = A− kz1T
n . We have C = B− 1T

n kz. Using
Sherman-Morrison [18] we have:

α = C−11n =

(
B−1 +

B−11nkT
z B−1

1−kT
z B−11n

)
1n =

B−11n

1−kT
z B−11n

=
hz

1−kT
z hz

, (3)

where hz = B−11n. Again, using Sherman-Morrison:

hz = B−11n =

(
A−1 +

A−1kz1T
n A−1

1−1T
n A−1kz

)
1n = u∗+

A−1kz1T
n u∗

1−kT
z u∗

= u∗+
1T

n u∗

1−kT
z u∗

uz, (4)

where u∗ = A−11n,uz = A−1kz. Since A and u∗ do not depend on the exemplar instance z,
the above suggests an efficient method to train multiple exemplar predictors. This method
requires computing A−1 only once, so the total complexity for p exemplars is the complexity
of computing A−1 and the complexity of computing uz and hz p times. The total complexity
is O(n3 + pn2). Here we assume the complexity for computing A−1 is O(n3) but there are
algorithms with lower complexity of O(n2.3727). In practice, for numerical stability, there
is no need to solve for A−1. We can find u∗ and uz for z = z1, . . . ,zp using the backslash
operation: [u∗,uz1 , . . . ,uzp ] = [1n,kz1 , . . . ,kzp ]\A.
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3.3 Calibrating exemplar predictors
The exemplar classifiers are efficiently trained together, but the classifiers are independent. To
compare and combine them, we will need to calibrate their prediction scores. One approach
is to use Platt scaling [32], but it is unsuitable for our scenarios due to the imbalance between
positive and negative classes and the need to prioritize high precision over recall. Here, we
propose to use a non-parametric method based on precision values instead.

Consider a particular exemplar z with the corresponding decision function fz(·) given in
Equation (2), we will first learn a function g that maps the raw output of f to the corresponding
precision value, which is calculated based on the set of other positive examples other than z
(i.e., Pz = P \{z}) and the set of holdout negatives N h. In other word, g(θ) is the precision
value of the detector that uses fz as the decision function and θ the detection threshold, i.e.,
g(θ) = a/(a+ b), where a and b are the number of positive and negative examples with
decision values greater or equal to θ .

We further ensure that the calibration function is monotonic non-decreasing by defining
ĝ(θ) := supθ ′≤θ g(θ ′). Hereafter, we will use f c

z to denote the calibrated decision function
for the exemplar z, i.e., f c

z (q) := ĝ( fz(q)), for any query point q. f c
z (q) is essentially the

estimated probability for the query point q to be positive, where the estimation was performed
on the holdout data.

3.4 Combining predictors: the EnEx predictor
Given a query data q and the calibrated scores of the exemplar classifiers, our objective here
is to calculate a value to indicate the likelihood for q being positive. Recall that the calibrated
score of an exemplar predictor is the precision value evaluated on a holdout dataset, so the
calibrated score is the direct estimate for the probability of the query point to be positive. One
approach is to use mean pooling, but the estimated probability will be corrupted by unreliable
prediction outputs. This is because each exemplar predictor is trained with a single positive
exemplar, so its decision is expected to be reliable only for data points that are sufficiently
similar to the exemplar. A more intuitive approach is to use max pooling (as in [28]), assigning
the decision value for q based on the exemplar classifier that has the highest calibrated score
for q. Max pooling, however, is not robust [22] given the noisiness of individual exemplar
classifiers. In this work, we propose to use Orderly Weighted Averaging [22, 52, 55, 56]. This
consists of two steps: (1) rank the calibrated scores of the exemplar predictors from highest to
lowest, and (2) use a learned weight vector to combine the scores.

For a query data q, let sq denote the vector of calibrated scores sq = [ f c
z1
(q), . . . , f c

zp(q)]
T .

We first calculate sq for q in P and N h. If q is from P , the entry of sq that comes from
the exemplar classifier q cannot be used, because q was used for training the classifier. We
therefore treat it as a missing value and replace it with the average value. We will then sort
the entries of each vector sq from the highest to the lowest, and learn a classifier to separate
{sort(sq)|q ∈ P} from {sort(sq)|q ∈ N h}. Following [22], we learn a weight vector v by
optimizing the following linear program:

min.
v,b

1
|P| ∑

q∈P
max(µ− (vT sort(sq)+b),0)+

1
|N h| ∑

q∈N h

max(µ +(vT sort(sq)+b),0),

s.t. v1 ≥ v2 ≥ ·· · ≥ vp ≥ 0,and v1 + v2 + · · ·+ vp = 1. (5)

Here, µ is the margin term of the Hinge loss, and it is set to: 0.5×|Eq∈P‖sq‖1 −
Eq∈N h‖sq‖n1|. The learned weight vector v will be then used for combining the ranked
calibrated scores. We will refer to the combined exemplar predictor as the EnEx predictor.
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Table 1: Results of predicting OpenDoor events with prediction of lead times 2s and 4s

τ1 = 2s τ1 = 4s

model @0.1 @0.3 @1.0 @0.1 @0.3 @1.0

MLP 54.5 54.1 31.1 45.8 41.0 21.3
LogReg 65.9 66.7 38.2 46.3 43.1 22.4
LSSVM 61.3 59.7 39.1 36.6 33.2 22.9
SVM 70.8 65.1 40.8 50.6 41.6 25.5
kNN (k=5) 69.6 66.8 38.1 45.0 32.8 20.4
eSVM 80.3 76.3 43.1 49.5 41.3 23.1
EnEx 79.2 76.3 44.8 57.0 47.9 27.4

Each column shows the the average precision values
at a particular recall threshold r, AP@r. Each number
is actually the running average AP@r (averaged over
time) for a predictor that is continually updated as a
new positive event is retrospectively detected. Non-
parametric methods (kNN, eSVM, and EnEx) work
relatively well. EnEx outperforms the other methods
by a wide margin in several cases, especially when
considering the AP for a lower recall threshold.

3.5 Forgetting mechanism based on clustering
The proposed training method is efficient, but can still be time-consuming if thousands of
exemplars are kept as more samples are observed. Thus we introduce a forgetting mechanism
based on clustering. Suppose the maximum number of exemplar predictors is pmax. When the
number of observed exemplars exceeds this budget, each exemplar predictor fz(·) is used on
all the training samples (P and N ) to obtain a vector of scores. And this vector is used as the
representation of the exemplar z. Then k-medoids is used to cluster the exemplars into pmax
clusters, and only the medoids are kept as representative exemplars. This method performs
clustering on the set of exemplar predictors (i.e., their classification scores) instead of the
representations of the exemplars in the feature space.

4 Experiments
We evaluate the proposed framework on its ability to predict different types of target events
in video. Specifically, we predict when a phone will be picked up, when a door will be
opened, and when certain cooking actions are performed. Our experiments are performed on
self-recorded videos and the EpicKitchen dataset [8]. Other than specifically mentioned, the
hyper-parameters of the models are kept the same across all the experiments.

4.1 Experiment setting
Replayed simulation from realistic data. We aim to develop a framework that keeps
observing a video stream, making predictions, and improving itself. This can be an everlasting
process once the framework is deployed. However, for development and evaluation, we
speed up the video stream by simulating the sequential arrival of events as follows. Given
a particular category of target events, a set of prerecorded videos, and a specific lead time
duration [τ1,τ2], the first step is to identify where target events occurred and extract the video
segments leading up to the events within the lead time range. The second step is to sample
video segments which were not followed by an event of interest within the lead time range.
This creates a collection of T video segments, each with a binary label for whether a target
event will be seen within the lead time range after the video segment. We randomly shuffle
the video segments and simulate their sequential arrival. At a certain step t, a pair of video
segment and label (vt ,yt+τ2) is used to update the predictor. We evaluate the performance
of this predictor snapshot on the future video segments (vt+1,yt+1+τ2), . . . ,(vT ,yT+τ2). Note
that the predictor does not gain any information from the evaluation process. For meaningful
evaluation results, we will use all unseen video segments for evaluation and only simulate the
process up until t = 0.75T , so that at least 25% of the data is used for evaluation.
Evaluation metric. Our goal is early prediction of target events, and we are more interested
in the moments when the events do occur than the moments when the events do not occur.
In general, events of interest do not occur very often, so an unintelligent predictor that
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never predicts the event will already achieve very high accuracy. So accuracy is not a good
performance measure. A better choice for data with class imbalance would be average
precision. However, as noted earlier, events might occur without any prior indication, so
it is unrealistic to aim for the prediction of every event. Therefore, we propose to use the
the average precision of the predictor up until certain recall value only. Let Pr(r) be the
precision of the predictor at recall r, the average precision until a particular recall threshold rt
(0 < rt ≤ 1) is calculated as AP@rt =

∫ rt
0 Pr(r)dr/rt . Note that AP@1 is the ordinary average

precision. Every recall threshold rt corresponds to a score threshold st for the decision
function, and this average precision is equivalent to calculating the average precision only
with test samples that have scores higher than st . For a properly trained predictor, lower recall
threshold should result in higher average precision.

4.2 Predicting OpenDoor events
We consider the task of predicting when a door will be opened given the visual stream of a
camera. The camera is mounted inside of a room facing the door. The door can be opened
from the inside or outside. If the door is opened from the outside, there will be no prior visual
indication. An OpenDoor action starts when the door is separated from the door frame and
ends when the door is completely shut. Our goal is to predict the OpenDoor events before
they start. We recorded for an extended period of time and observed 27 OpenDoor events.
About half of the times the door was opened from the outside. From the remaining part of the
video, we sample a negative set of video segments that did not contain an OpenDoor event.
Altogether, we have a dataset of 323 video segments, among which 8.36% are positive.

Our task at time t is to predict if a OpenDoor event will occur between time t+τ1 and t+τ2.
The input feature vt is a 512-dim vector, which is obtained by max-pooling the ResNet-34 [19]
feature vectors for all the frames in the time window [t− l, t], with l = 5s. We experiment
with different values for the lead time τ1 of 2s and 4s. The tolerance duration τ2− τ1 is
always 2s. We compare with four parametric and two non parametric classifiers: multiple
layer perceptron (MLP), logistic regression (LogReg), least-squared SVM (LSSVM) [42],
SVM [44], k nearest neighbors (kNN, k = 5), and exemplar SVM (eSVM) [28]. We use an
RBF kernel for SVM, LSSVM, and eSVM. The results averaged over 20 experiment runs,
are shown in Table 1. Non-parametric methods work better than parametric ones in this
experiment, and EnEx yields the best or close to the best result for different measurements
and settings. In the supplementary video, it is clearly shown that the learned model only
responds to the cases that the door is opened from the inside.

4.3 Predicting PickupPhone human actions
We consider the task of predicting when a cell phone will be picked up. A camera is mounted
on top of a shelf pointing at a desk on which the phone is placed. The phone will be picked
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Figure 2: Performance of different classifiers for predicting PickupPhone actions with lead
time τ1 = 0.5s. Each subplot shows the Average Precision at recall threshold r (AP@r).
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Table 2: Results on top-20 EpicKitchen actions
positive AP@0.1 AP@1.0

action % # EnEx eSVM SVM LSSVM LogReg EnEx eSVM SVM LSSVM LogReg

open-cupboard 11.6 580 30.2 20.9 28.3 27.7 25.1 20.0 13.2 18.3 20.4 18.8
open-drawer 10.6 441 32.6 24.3 31.7 27.5 25.0 20.4 13.0 18.4 20.2 18.5
put-plate 8.8 377 83.2 32.9 79.3 76.4 51.2 31.5 15.5 33.3 33.4 28.6
take-plate 8.3 372 27.9 18.1 27.8 24.3 21.6 16.6 10.2 14.8 16.4 15.0
close-cupboard 9.3 362 53.0 32.5 53.4 46.6 50.1 27.8 14.4 27.3 27.7 28.6
take-spoon 7.6 345 20.4 14.1 14.3 15.9 13.7 11.7 8.9 10.2 11.4 10.8
open-fridge 7.8 344 28.3 13.9 19.6 21.5 20.7 14.1 9.2 12.6 13.8 13.4
open-tap 14.1 333 64.4 22.2 55.6 50.6 37.8 30.8 16.8 28.5 28.5 25.2
wash-hand 7.1 330 36.1 7.8 35.7 37.0 30.4 17.1 7.2 15.5 17.2 15.2
put-spoon 8.4 317 52.3 25.3 52.8 48.0 32.8 21.5 12.4 20.6 21.1 17.9
take-knife 8.1 306 22.9 17.5 19.2 19.3 15.3 12.3 9.9 11.1 12.0 11.1
put-knife 7.4 287 49.2 15.9 45.2 45.9 31.0 19.7 9.5 17.8 20.3 16.7
close-fridge 7.1 280 68.5 27.2 67.5 62.9 53.7 31.5 11.8 33.1 32.6 31.1
close-tap 10.3 267 60.1 22.3 67.6 59.9 48.4 33.0 14.0 34.1 33.6 29.8
put-pan 7.5 256 42.9 28.4 43.0 33.1 40.0 18.6 11.9 18.0 19.0 20.0
close-drawer 8.0 249 59.9 23.6 51.6 53.2 33.0 25.8 11.7 23.4 25.8 21.5
turnoff-tap 7.4 227 80.5 28.7 69.6 62.4 44.5 31.1 12.7 29.4 28.8 24.8
wash-plate 11.0 218 74.6 54.1 70.9 66.6 56.9 38.6 23.6 38.6 37.9 33.9
put-bowl 8.5 217 47.1 37.9 42.9 41.3 36.4 21.2 15.0 19.7 20.3 19.2
turnon-tap 7.4 214 45.5 15.5 26.3 31.9 25.0 15.4 9.4 12.9 14.5 13.2

average 8.8 316 49.0 24.2 45.1 42.6 34.6 22.9 12.5 21.9 22.7 20.7

% and # are the percentage and number of positive events from the data stream, respectively. Action classes are
sorted by #. This table reports the running average AP@r for several types of predictors.

up when a notification pops up on the phone’s screen, but it can also be picked up without
any screen notification. The field of view is limited, and the phone owner is not visible most
of the time, only his hand appears when the phone is being picked up. We recorded for an
extended period of time to capture multiple instances of the phone pickup action. Altogether
there are 105 pickup actions, roughly half of them occur without a notification on the phone’s
screen. From the remaining part of the video, we sample a negative set of video segments
that did not contain the pickup action. Altogether, we have a dataset of 446 video segments,
among which 22.53% are positive.

The 512-dim input feature vt is obtained by max-pooling the ResNet-34 feature vectors
for all the frames in l = 2s window before t. The tolerance duration τ2− τ1 is always set to
2s. We compare with several types of parametric and non-parametric classifiers, as described
in Section 4.2. The results for τ1 = 0.5s, averaged over 20 experiment runs, are shown in
Figure 2. Results for other lead times can be found in the supplementary material. As can
been seen from Figure 2, EnEx outperforms other methods by a wide margin. The gap is
particularly large when when there are only 20 positive examples of the target event. The
other exemplar-based classifier eSVM does not perform as well in this case, possibly due
to the use of different ways for calibrating and combining the exemplar classifiers. In the
supplementary material, it is illustrated that the EnEx model only responds to the events
with a notification on the screen. We also perform some ablation experiments to show the
effectiveness of the proposed calibration and combination methods.

4.4 Predicting human actions in kitchens
We consider the task of predicting the action of a person in a kitchen using an ego-centric
camera mounted on the head. For this experiment, we use the publicly available EpicKitchen
dataset [8]. Videos from this dataset are densely annotated with verb-noun action labels
(e.g. open-drawer). Some sample frames can be found in the supplementary material. We
do experiments on the most 20 popular action categories, listed in Table 2. The data is
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Table 3: Results of AKI prediction

Covid-19 patients All patients

Model @0.1 @0.3 @1.0 @0.1 @0.3 @1.0

MLP 56.5 49.9 33.3 47.2 40.1 23.4
LogReg 50.0 43.5 28.8 41.0 36.0 22.0
LSSVM 57.8 50.1 34.0 51.1 42.1 25.9
SVM 61.4 52.9 36.3 56.6 46.7 28.6
kNN (k=5) 41.1 29.5 20.4 31.5 21.3 14.1
ESVM 46.7 43.6 30.5 30.6 29.0 19.9
EnEx 67.5 58.7 39.3 60.4 49.0 29.7

Two data pools are used: patients with Covid-19 and
all patients. Each column shows the the average pre-
cision values at a particular recall threshold r, AP@r.
Each number is actually the running average AP@r
(averaged over time) for a predictor that is continu-
ally updated as a new positive AKI case is observed.
EnEx outperforms the other methods, especially when
considering the AP for a lower recall threshold.

sampled similarly as in previous experiments. We use the I3D [5] network trained on the
Kinetics 400 [23] to extract action feature at each second of the video. vt is the temporally
max-pooled I3D feature vectors of the l = 5s before t. We set τ1 = 1s, and τ2−τ1 = 2s. Note
that different action instances have different length, so after sampling, the most popular action
might not be the one that has the highest positive rate in training samples.

Table 2 reports the running average AP@0.1 and AP@1.0 scores of different methods,
averaged over 20 experiment runs. The results show that the proposed method EnEx predicts
visual events with higher precision, especially at low recall threshold. For the AP at the low
recall threshold AP@0.1, EnEx outperforms other methods on 16 out of 20 action classes,
by a wide margin in many cases. For the remaining 4 action classes, the performance gap
between the best method and EnEx is smaller than 1%, except for close-tap, where SVM
obtains much higher AP@0.1 than EnEx. Results are more varied for AP@1.0. Out of the 20
actions, EnEx is the best in 12 cases (with 2 ties). For actions that EnEx is not the best, it is
also not far behind from the best. On the other hand, the other methods do not perform as
consistently and robustly. SVM outperforms EnEx for some actions, but on other actions (e.g.
open-fridge, turnoff-tap, turnon-tap), its precision is much lower than EnEx. LSSVM and
Logistic Regression also suffer from this problem. eSVM does not performance well on most
the actions, probably due to its lack of dedicated calibration and combination methods.

4.5 Predicting AKI of hospitalized patients
EnEx is general and can be used for non-visual events as well. We consider the task of
predicting if a patient will develop acute kidney injury (AKI) during hospital stay. We
collected a dataset of 3455 hospitalized patients from a major US hospital (name withheld
for anonymity) during the current Covid-19 pandemic. Among them, 1373 (39.7%) were
Covid-19 positive, and 264 (7.6%) developed AKI before their death or hospital discharge.
We aimed to build a predictive model based on a set of 95 features including demography,
medical history, syndromes, and laboratory tests. We also simulated the sequential arrival
of the patients, retrained prediction models whenever a positive AKI case was observed,
and re-evaluated the models on the yet-to-arrive patients. Table 3 shows the results of this
experiment, averaged over 20 experiment runs. We consider two pools of patients: (i) patients
with Covid-19 and (ii) all patients, with or without Covid-19. EnEx outperforms the other
models, and the performance between EnEx and the second best model is wider on the pool
of Covid-19 patients.

4.6 Comparison with end-to-end methods
We compare the performance of EnEx against deep network models for predicting Pickup-
Phone actions with τ1 = 0.5s, OpenDoor events with τ1 = 2s, and averaged top-5 EpicKitchen
actions with τ1 = 1s. The compared models are: i) a pretrained ResNet-34 [19] followed by
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Table 4: Comparison of EnEx with end-to-end models

OpenDoor 2s PickupPhone 0.5s Epic 1s

model @0.1 @0.3 @1.0 @0.1 @0.3 @1.0 @0.1 @1.0

ResNet 57.7 52.9 31.5 68.1 63.1 38.4 41.9 22.5
ruLSTM 61.9 51.3 26.9 76.9 52.4 33.2 40.5 29.2
EnEx 79.2 76.3 44.8 82.1 67.5 38.3 45.4 23.3

Each column in the table shows AP@r. Each
number is the average of 10 experiment runs.
EnEx outperforms ResNet and ruLSTM in
most cases, especially for OpenDoor events
where the positive samples are very sparse.

(a) OpenDoor (b) PickupPhone (c) open-tap

Figure 3: Performance of different exemplar budgets. Data points are averaged over 20 runs.

temporal max-pooling and fully-connected classifier (similar to the feature extractor used in
Section 4.2 and Section 4.3) and ii) ruLSTM [15], the state-of-the-art model for action antici-
pation. The whole networks of the deep models are trained end-to-end using cross-entropy
loss. The same data shuffling and evaluation methods in Section 4.1 are used. Similarly,
each model is trained and evaluated for 10 runs with different random data shuffling, and the
average performance is reported in Table 4. Despite being much heavier in computation, deep
models still fall behind EnEx in most cases, especially for lower recall thresholds and when
only very few positive samples are observed. We also observe that the performance of neural
models has higher variance across different runs, implying unstable optimization.

4.7 Effect of clustering-based forgetting
We use the same setting of predicting PickupPhone human actions with τ1 = 0.5s, OpenDoor
events with τ1 = 2s, and open-tap actions with τ1 = 1s. In each run, all the EnEx models
share the same split of observed samples, but have different exemplar budgets pmax. The
largest budget is equivalent to unlimited. We run the experiments for 20 times, and report
AP@r in Figure 3. The results show that using about half of the observed exemplars can
reduce the calculation cost, but still achieve similar prediction performance. When the number
of exemplars increases to the point that computation becomes time-consuming, forgetting
mechanism can be applied to trade-off between speed and precision.

5 Conclusions
We have described a non-parametric method for event prediction based on an ensemble of
exemplar classifiers. Each exemplar classifier is obtained by training a classifier to separate a
single pre-positive video segment from many pre-negatives. We have developed an efficient
formulation for training multiple exemplar classifiers together, and we have also proposed a
novel method for calibrating and combining multiple weak exemplar classifiers to create a
stronger ensemble classifier. The ensemble classifier accounts for the non-predictable events,
and it does not suffer from the drawbacks of many parametric classifiers. We have evaluated
our method on its ability to predict visual evens (PickupPhone, OpenDoor, and cooking
actions) as well as non-visual event (Acute Kidney Injury) and showed that our method
outperformed the others in many cases.
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