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Abstract

Noisy and unrepresentative frames in automatically generated object bounding boxes
from video sequences cause significant challenges in learning discriminative represen-
tations in video re-identification (Re-ID). Most existing methods tackle this problem by
assessing the importance of video frames according to either their local part alignments
or global appearance correlations separately. However, given the diverse and unknown
sources of noise which usually co-exist in captured video data, existing methods have not
been effective satisfactorily. In this work, we explore jointly both local alignments and
global correlations with further consideration of their mutual promotion/reinforcement
so to better assemble complementary discriminative Re-ID information within all the
relevant frames in video tracklets. Specifically, we concurrently optimise a local aligned
quality (LAQ) module that distinguishes the quality of each frame based on local align-
ments, and a global correlated quality (GCQ) module that estimates global appearance
correlations. With the help of a local-assembled global appearance prototype, we asso-
ciate LAQ and GCQ to exploit their mutual complement. Extensive experiments demon-
strate the superiority of the proposed model against state-of-the-art methods on five Re-
ID benchmarks, including MARS, Duke-Video, Duke-SI, iLIDS-VID, and PRID2011.

1 Introduction
Person re-identification (Re-ID) aims to match pedestrian’s identity across disjoint cameras
views distributed at different locations [2, 34, 38, 39]. Early Re-ID studies concentrated on
exploring appearance patterns unique per identity from still images [5, 21, 45], which has
shown remarkable discrimination capacity. However, such methods assume well-curated
data and the identity information are preserved in images. This assumption dramatically
restricts their scalability and usability to many practical application scenarios when uncon-
trollable environments are the norm not the exception where video data are captured [20, 25].
Video person Re-ID beyond still images requires analysing and assembling information from
a sequence of video frames in each tracklet so to build a more discriminative and robust rep-
resentation of pedestrians in motion, minimising information corruption from poor frames
and ID-switch [2, 4, 12, 24, 43, 46].
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(a) Local part alignments (b) Global appearance correlations (c) Local-global Joint (d) Local-global Association

Figure 1: Illustration of four types of quality assessment strategies for frame assembling.

In the literature, one of the most commonly adopted techniques for assembling identity
information from different video frames is averaging by pooling [30, 32]. By assuming all
the frames are in equal importance, the pooling method neglects their diverse qualities caused
by the constantly changing environments and/or unreliable pedestrian detections. Therefore,
the aggregated tracket’s representations are likely impacted by various types of noise as
shown in Fig. 1. In order to selectively assemble video frames rather than averaging, atten-
tion mechanisms [13, 14, 33, 35, 37] have been studied to explore the correlations between
the global visual features of frames (Fig. 1 (b)) so that the common appearance patterns
shared among frames in the same tracklet are maintained while removing/ignoring unusual
and low-quality frames [22, 23, 27, 36]. In contrast to the global appearance correlations,
an alternative approach [11, 12, 48] compares video frames by local parts (Fig. 1 (a)) so to
identify outliers that are significantly misaligned with other frames in a tracklet. Although
sharing the same objective to adaptively assemble only the relevant video frames, these two
approaches differ in exploiting information in different granularities. In isolation, both are
sub-optimal in different real-world video scenes. The local-parts approach is fragile if the
detected pedestrians are not well-aligned while the global-appearance approach is spatially
insensitive, tending to miscorrelate patterns of interest in the background. Beyond attentive
assembling, Recurrent Neural Network (RNN) [28, 43] has also been exploited for mod-
elling temporal information to represent frame sequences in video tracklets. However, this
approach is also vulnerable to noisy frames without careful frame selections [40].

In this work, we propose a tracklet frame assembling approach to video person Re-ID
termed Local-Global Associative Assembling (LOGA). As shown in Fig. 1 (d), the LOGA
method adaptively assembles video frames in the same tracklets by a Local Aligned Quality
(LAQ) and a Global Correlated Quality (GCQ) modules to assess importance/relevance of
the frames by both their alignments in local part and global appearance correlations as well
as their mutual reinforcements. Whilst the focus of most existing spatial-temporal attentive
methods is on collaborating the temporal information with intra-frame spatial attention, we
aim to exploit the inter-frame complements more effectively, which is different and ready
to benefit from the advancing per-frame learning. Specifically, the LAQ module divides all
video frames in a tracklet into a same set of spatial parts and assesses each frame’s quality by
their part-wise alignment to the other frames so to measure both inter-frame visual similarity
and spatial alignment. On the other hands, the GCQ module is applied on the holistic feature
representation of each frame to consider inter-frame global appearance correlations, which is
more robust to local part misalignment but spatially insensitive so less reliable from miscor-
relation of information, e.g. irrelevant patterns in the background. Furthermore, to associate
the local and global information and exploit their mutual benefits, we take the tracklet’s rep-
resentation assembled by the LAQ as its prototype and compare the global visual feature of
frames with it in the GCQ module so that the two modules are encouraged to find a trade-off
between the local and global information to cope with different types of noise more reliably.

Contributions of this work are three-fold: (1) To our best knowledge, we make the first
attempt to explore the association and mutual promotion of frame’s local part alignments
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and global appearance correlations in assembling a sequence descriptor so to improve the
model’s robustness to noisy frames and inter-frame ID-switch in video Re-ID. (2) We pro-
pose a new video person Re-ID model termed Local-Global Associative Assembling (LOGA)
that learns a discriminative and reliable representation for video tracklets by adaptively as-
sembling frames of diverse qualities. (3) We introduce a local-assembled global appearance
prototype to associate the local and global visual information by exploiting their mutual
agreements to facilitate the learning of a discriminative tracklet representation.

Extensive experiments show the performance advantages and superior robustness of the
proposed LOGA model over the state-of-the-art video Re-ID models on four video Re-ID
benchmarks MARS [50], Duke-Video [29, 41], Duke-SI [20], and iLIDS-VID [34].

2 Related Works
Video person Re-ID aims to learn an expressive appearance feature and/or distance metric
from a sequence of frames, i.e., a video tracklet. To take the advantages of the additional
temporal information and complementary spatial information intrinsically available in video
tracklets, existing approaches explore either local part alignments [1, 11, 12, 31, 48] or
global appearance correlations [17, 18, 22, 23, 25, 27, 36, 47] to assemble the per-frame
representations with high robustness to their diverse qualities.
Local part alignments. Considering the consistent body structure shared among humans
and the arbitrary combinations of body part’s appearance that unique to each identity, it
is intuitive to differentiate images/frames of pedestrians regarding their visual similarity in
different parts. In this spirit, local-parts assembling approaches [1, 11, 12, 31, 48] apply
per-part comparisons of video frames in the same tracklets to identify outliers which are
misaligned with others in most local parts, so as to restore the corrupted parts of frames
with the complements of others [11, 12] or degrade their importance in frame assembling [1,
31, 48]. However, this hypothesis that a pedestrian detected in different video frames being
mostly well-aligned is often untrue due to unreliable auto-generated person bounding boxes,
e.g. the importance of a noise-free video frame might be underestimated due to the spatial
shift of its detected bounding box from those in other frames. In this work, we further
consider the holistic visual similarity of video frames when assessing their quality, which
helps refrain from inaccurate assessments caused by part misalignments.
Global appearance correlations. In contrast to the local-parts approaches, methods
based on global-appearance [17, 18, 22, 23, 25, 27, 36, 47] take the advantages of the strong
representational power of convolutional neural network (CNN) [6, 16] to learn correlations
between video frames holistically so that the irrelevant frames, which are likely in low-
quality, are suppressed in frame assembling. However, the CNN features can be insensitive
to spatial shift resulting in potential miscorrelations of visually similar but irrelevant parts,
e.g. the ID-switch issue shown in Fig. 1 (b) is hard to be detected due to the subtle differences
in the two pedestrians’ outfits. This will result in misassemblling of frames to represent a
tracklet. To address this problem, we propose to enhance the global-appearance methods by
jointly explore frames’ holistic visual correlations and their local part alignments by consid-
ering inter-frame spatial relations.
Spatial attention. Beyond the temporal assembling approaches discussed above, spatial
attention [37] is also popular in both image and video person Re-ID [4, 21, 40, 42, 51]. By
exploring the correlations of local parts within a still image or across different video frames,
the spatial attention mechanism is able to adaptively focus on the more discriminative regions
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regardless of their spatial location. However, this is prone to miscorrelation of information
in video frames as in the global-correlated assembling approaches. Differently, our LAQ
module investigates the alignments of the same part across different video frames, focusing
on exploiting complementary inter-frame information in a tracklet.

There are a few recent attempts on exploring jointly the local and global information
for frames assembling in video Re-ID [3, 44]. However, they learn from these two types
of information with few interactions either by a dual-branch network [3] or feature concate-
nations [44], and overlook the local-global mutual impacts (Fig. 1 (c)). We validated the
effectiveness of the proposed LOGA over those assembling strategies in both performance
evaluation (Section 4.1) and ablation analysis (Section 4.2).

3 Video Person Re-ID
Given N video tracklets T = {TTT i}N

i=1 with each containing L frames TTT i = {IIIi
j}L

j=1 depicting
C pedestrians in motion, the objective of video person Re-ID is to derive a representation
model θ from the tracklets data V which is capable of extracting discriminative feature rep-
resentations xxx: fθ (TTT )→ xxx for Re-ID matching across disjoint camera views. Considering the
diverse and unknown sources of noise commonly exist in surveillance videos, which leads
to distractions in different frames, it is essential for the model to effectively recognise visual
patterns that specific to each pedestrian to selectively assemble frames into a tracklet’s rep-
resentation. This is inherently challenging due to the uncertain nature of noise in tracklets of
people in motion against backgrounds of visually similar distractors.

3.1 Local-Global Associative Assembling
In this work, we propose a Local-Global Associative Assembling (LOGA) model to address
this problem by selecting information from video frames in the same tracklets according to
both their local part alignments and global appearance correlations as well as the synergy and
mutual promotion of these two types of information. For notation clarity, in the following,
we focus on the formulation of assembling frames {IIIi}L

i=1 in a single video tracklet TTT and
ignore its tracklet index. As shown in Fig. 2, the video tracklet is first fed into a Local Aligned
Quality (LAQ) module to assess the quality of frames regarding their part-wise alignment:

{wl
i}L

i=1 = fθl ({IIIi}L
i=1). (1)

The θl in Eq. (1) is the learnable parameters of the LAQ and wl
i denotes the importance

of frames IIIi determined by its alignments with other frames in local parts. Then, a global
correlated quality (GCQ) module is devised which is applied to the D-dim holistic visual rep-
resentation EEE = {eeei}L

i=1 ∈RD×L of frames to determine their global appearance correlations.
Instead of focusing on only the global visual features that are prone to spatial-insensitive
miscorrelation, we explore the mutual synergy between local and global information by as-
sociating LAQ and GCQ through a prototypical descriptor ppp. This assembles a frame’s
global features by their local-parts quality in GCQ for correlation exploration:

ppp =
L

∑
i=1

wl
ieeei, (2)

{wg
i }

L
i=1 = fθg({eeei}L

i=1|ppp), (3)
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Figure 2: Overview of the proposed Local-Global Associative Assembling (LOGA) method.

where {wg
i }L

i=1 denotes frame’s quality regarding their global-appearance feature EEE and θg
is the learnable parameters of the GCQ module. In this way, the final representaion xxx of a
tracklet TTT is obtained by associating LAQ and GCQ through ppp:

xxx = f (EEE|wwwl ;wwwg). (4)

With the tracklet-level representations, the LOGA model can be trained with arbitarily
conventional Re-ID objectives in an end-to-end manner. In inference, a generic distance
metric (e.g. cosine distance) is used to measure pairwise visual similarity of tracklets for
video Re-ID matching. The overall learning process of the LOGA model is depicted in
Algorithm 1.

Algorithm 1 Local-Global Associative Assembling (LOGA).
Input: Video tracklets T , Identity labels Y .
Output: A deep CNN model for video person Re-ID.
for i = 1 to max_iter do

Randomly sample a mini-batch of video tracklets from T and their identity labels from Y .
Compute the local-aligned per-frame importance scores (Eq. (1)).
Feed the tracklets into backbone network to obtain their holistic visual features EEE.
Compute the local-assembled global appearance prototype (Eq. (2)).
Compute the global-correlated per-frame importance scores (Eq. (3)).
Compute the tracklet-level representations (Eq. (4)).
Compute the objective losses and update the network by back-propagation.

end for

Local aligned quality. To explore the visual similarity of frames in terms of their local
alignments, we separate them uniformly into M non-overlapping patches (parts) and apply
patch-wise cross-frame convolution to recognise the aligned local patterns. This is accom-
plished by first flatten the 2D frames {IIIi}L

i=1 then stacking them in the channel dimension as
the raw representation of the tracklet TTT maintaining the inter-frames spatial correspondence.
An 1D convolution is then applied on TTT to explore the per-part visual patterns,

w̃wwl = FFF ∗TTT , FFF ∈ RS×L×L, (5)

where ∗ denotes the 1D convolution function and FFF is a trainable kernel. The size S of kernel
FFF is determined by the granularity of the spatial separation, i.e., S = H×W

M where H and W
are the height and width of frames, respectively. The computed results w̃wwl ∈ RM×L encode
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the part-wise importance of every frame, which is then aggregated by pooling followed by a
multi-layer perceptron (MLP) to obtain the per-frame scores:

wwwl = fθl ({IIIi}l
i=1) = Softmax(MLP(Pooling(w̃wwl))) ∈ (0,1)L×1. (6)

The Pooling(·) in Eq. (6) is a frame-wise mean pooling function and the MLP(·) stands for a
single layer MLP activated by a ReLU function. The resulted scores are then normalised by
softmax function as the indication wwwl of per-frame importance to the tracklet TTT . In this way,
the LAQ learns to assess the frame’s quality by its local part alignments to other frames, so
to identify the misaligned outlier frames and suppress them from representing a tracklet.

Global correlated quality. The GCQ module is formulated to explore the inter-frame
correlations according to their global appearances. However, the spatial invariant character-
istic of the CNN features tends to miscorrelate patterns of interests with potential noise in the
background, i.e. completely ignoring the spatial part’s alignment. In this case, we propose
to establish the GCQ on the results yielded by LAQ so to associate them by their synergy.
Specifically, given the frame’s importance wwwl computed by Eq. (6) regarding their local part
alignments, we first assemble their visual features accordingly in Eq. (2), which serves as
the appearance prototype ppp of a tracklet. Then, the global-appearance quality of a frame is
estimated according to the correlation between their global features and the prototype:

qqq = fθq(ppp) ∈ RD×1, KKK = fθk(EEE) ∈ RD×L

wwwg = fθg({eeei}L
i=1|ppp) = Softmax(KKK>qqq) ∈ (0,1)L×1.

(7)

The fθq and fθk functions in Eq. (7) are to linearly transform respectively the prototype and
frame’s features. Both are followed by batch normalisation. In this way, the video frames
in TTT with higher appearance correlations to the pedestrian’s prototype ppp will be highlighted
with larger wg

i and those mis-correlated ones will be suppressed.

Tracklet-level representation. Given the global-appearance quality of frames, their vi-
sual features can be selectively aggregated by:

VVV = fθv(EEE) ∈ RD×L, p̂pp =VVV wwwg ∈ RD×1, (8)

where fθv is identical to fθq and fθk in Eq. (7) with independent parameters θv. Rather than
taking p̂pp as the final representation of the tracklet TTT , in light of the residual learning [8],
we distill the complementary information from global appearance correlations of frames to
enhance the prototype computed by local-parts quality so to minimise representational error
from identity-irrelevant part misalignments. To that end, we further learn the residual of ppp
from p̂pp and obtain the visual feature representation of TTT by:

xxx = f (EEE|wwwl ;wwwg) = ppp+FC(p̂pp) ∈ RD×1. (9)

This design not only explores the global features of frames but also considers their local part
alignments for optimising a discriminative tracklet representation.

3.2 Model Training
Given the formulations of LAQ and GCQ, the proposed LOGA model can benefit from
conventional learning supervisions. Specifically, the LOGA model is jointly trained with a

Citation
Citation
{He, Zhang, Ren, and Sun} 2016



Q. LI, J. HUANG, S. GONG: LOCAL-GLOBAL ASSOCIATIVE FRAME ASSEMBLE 7

(b) MARS(a) Duke-SI (c) Duke-Video

(d) iLIDS-VID (e) PRID2011

Figure 3: Example pairwise tracklets with the same ground-truth identity labels. Various
noises are caused by illumination, viewpoints, resolution, occlusion, background clutter, etc.
softmax cross-entropy loss Lid and a triplet ranking loss Ltrip [9]. The softmax cross-entropy
loss Lid is employed to optimise identity classification:

ỹyyi = Softmax(FC(xxxi)), Lid(TTT i) =−
C

∑
j=1

yi, j log ỹi, j. (10)

The yyyi in Eq. (10) is an one-hot indicator of the ground-truth identity of tracklet TTT i and the
FC(·) serves as a linear classifier which maps the tracklet’s representation xxxi into an identity
prediction distribution ỹyyi while C is the total number of identities. Moreover, the triplet
ranking loss Ltrip explicitly draws the features of a positive tracklet pair sharing the same
identity closer in the learned latent space while pushes the negative pairs apart:

Ltrip(TTT i) = max(0,∆+D(xxxi,xxx+i )−D(xxxi,xxx−i )), (11)

where xxx+i and xxx−i are the representations of two randomly sampled tracklets with the same
and different ground-truth labels as xxxi in respective, D(·, ·) measures the distance of two
features and ∆ is a predefined margin. The overall optimisation objective of a batch of
tracklets is then formulated by combining the two losses as:

L=
1
n

n

∑
i=1

(Lid(TTT i)+Ltrip(TTT i)), (12)

where n is the size of a mini-batch. Since the objective function Eq. (12) is differentiable,
the LOGA model can be trained end-to-end by the conventional stochastic gradient descent
algorithm in the batch-wise manner.

4 Experiments
Datasets. The proposed Local-Global Associative Assembling (LOGA) is evaluated on
four video-based Re-ID datasets: MARS [50], Duke-Video [29, 41], Duke-SI [20], iLIDS-
VID [34], and PRID2011 [10]. Example tracklets are shown in Fig. 3. The MARS has
20,478 tracklets of 1,261 persons captured from a camera network with 6 near-synchronised
cameras. Duke-Video is a newly released large-scale benchmark of 1,812 person identi-
ties with 4,832 tracklets. Duke-SI is a fully auto-generated version of Duke-Video without
manual frames selection, thus, more practical and challenging. The iLIDS-VID dataset is
relatively small scale including 600 video tracklets of 300 persons captured by two disjoint
cameras in an airport arrival hall. The PRID2011 is another small scale dataset containing
1,134 tracklets from 934 identities captured by two cameras.
Evaluation Metrics. To evaluate the effectiveness of the proposed LOGA model, we
adopted two commonly used performance metrics in person re-id including Cumulative
Matching Characteristics (CMC) and Mean Average Precision (mAP) [49].
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Implementation Details. For fair comparisons, we took a ResNet50 [8] as the backbone
network for global visual feature extraction [7]. Given that the video tracklets are composed
of arbitrary number of frames, we split each tracklet into several clips with a fixed length of
10. We randomly sampled 4 identity instances each with 8 clips to construct a mini-batch
in model training. All the frames were resized to 256×128 and augmented by random hor-
izontal flip. We used Adam [15] with weight decay of 5e− 4 for model optimisation. The
margin ∆ in Eq. (11) is set to 0.3, and the dimension D of representations is set to 2048
following [7, 26]. The kernel size S for the 1D convolution in Eq. (5) is set to 10. The model
was trained on two P100 GPUs for 240 epochs, and the learning rate is initialised to 3e−4
which linearly decayed with a factor of 0.1 per 60 training epochs. During the testing stage,
the tracklet-level representation was obtained by averaging pooling the learned representa-
tions of their clips. Cosine distance was then used to measure the distances between a query
and every probed tracklet in gallery for Re-ID.

4.1 Comparisons to the State-of-the-Art

Methods Duke-Video Duke-SI MARS iLIDS-VID PRID2011
mAP R1 R5 R20 mAP R1 R5 R20 mAP R1 R5 R20 R1 R5 R20 R1 R5 R20

TAUDL [19] - - - - 20.8 26.1 42.0 57.2 29.1 43.8 59.9 72.8 26.7 51.3 82.0 49.4 78.7 98.9
EUG [41] 78.3 83.6 94.6 97.6 - - - - 67.4 80.8 92.1 96.1 - - - - -
Snippet [2] - - - - - - - - 76.1 86.3 94.7 98.2 85.4 96.7 99.5 93.0 99.3 100.0
VRSTC [11] 93.5 95.0 99.1 99.4 - - - - 82.3 88.5 96.5 - 83.4 95.5 99.5 - - -
GLTP [17] 93.7 96.3 99.3 99.7 - - - - 78.5 87.0 95.8 98.2 86.0 98.0 - 95.5 100.0 -
UTAL [20] - - - - 36.6 43.8 62.8 76.5 35.2 49.9 66.4 77.8 35.1 59.0 83.8 54.7 83.1 96.2
STMP [24] - - - - - - - - 72.7 84.4 93.2 96.3 84.3 96.8 99.5 92.7 98.8 99.8
STA [4] 94.9 96.2 99.3 99.6 - - - - 80.8 86.3 95.7 98.1 - - - - - -
STAR [40] 93.4 94.0 99.0 99.7 - - - - 76.0 85.4 95.4 97.3 85.9 97.1 99.7 93.4 98.3 100.0
FGRA [3] - - - - - - - - 81.2 87.3 96.0 98.1 88.0 96.7 99.3 95.5 100.0 100.0
MG-RAFA [48] - - - - - - - - 85.9 88.8 97.0 98.5 88.6 98.0 99.7 95.9 99.7 100.0
AP3D [7] 95.6 96.3 99.3 99.9 74.7 79.3 91.7 97.4 84.5 90.4 96.6 98.4 86.7 98.0 99.7 94.4 98.9 100.0
LOGA 96.6 97.0 99.4 99.9 76.6 81.0 92.8 97.8 84.1 89.5 96.3 97.9 91.3 99.3 100.0 95.9 98.9 100.0

Table 1: Comparisons to the state-of-the-art video person Re-ID methods. Results of the
prior methods are from the original papers or reproduced by the official codes. The 1st/2nd
best results are in bold/underlined. ‘†’: unsupervised.

In Table 1, we compared the proposed LOGA model with a wide range of state-of-the-art
video person Re-ID methods. The LOGA model yielded the best results across the board,
which suggests the efficacy of associatively exploring local part alignments and global ap-
pearance correlation in assembling a discriminative representation of a tracklet. Whilst
maintaining its competitiveness on the large-scale MARS and the well-curated Duke-Video
datasets, the LOGA model achieved compelling improvements over the other methods on
iLIDS-VID and its performance advantage is more significant on the automatically detected
and segmented Duke-SI, in which case LOGA outperformed the others by 1.9%∼55%,
1.7%∼54.9% and 1.1%∼50% on mAP, rank-1 and rank-5, respectively.

4.2 Ablation Study

We conducted further studies to experimentally investigate the effectiveness of exploring
the complementary local and global information by solely considering one while ablating
another, and also demonstrated the superiority of our associative assembling over the dual-
branch strategy [3] which used both local and global information separately. We also pro-
vided comprehensive visualisation for intuitively understandings.
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Figure 4: Ablation studies on model components.

Components analysis. We started with examining the role of local part alignments by
introducing LAQ for frame assembling. Fig. 4 (pink v.s. orange) shows that both metrics
on most datasets are decreased. This is caused by the unrealistic assumption that local re-
gions of all the frames are well-aligned. Such an assumption is shown to be unreliable due
to uncontrollable environment and fragile detection/segmentation. We further examined the
importance of global appearance by solely employing GCQ for frame assembling. The un-
satisfying performance as reported in Fig. 4 (pink v.s. gray) suggests assessing the quality of
frames in accordance with solely the unobstructed global appearance is unreliable owing to
the fine-grained details being ignored. In contrast, when both LAQ and GCQ are adopted,
LOGA exhibits remarkable advantage over all other counterparts (green v.s. others). This
demonstrates the indispensable of both LAQ and GCQ.

Effects of assembling strategy. We further studied the effects of different strategies to
join the local and global information in frames assembling: (1) separately assembling by
two individual branches learned in parallel according to the two kinds of information [3]. (2)
directly connecting local and global information by rescaling the per-frame visual features EEE
according to their normalised local alignment scores (Eq. (6)) then explore their global cor-
relations by the conventional self-attention on the rescaled features. (3) associatively assem-
bling by combining the local-assembled prototype and global-assembled residual (Eq. (9))
to exploit their synergy. The comparison given in Fig. 5 (green v.s. others) shows a no-
ticeable advantage of LOGA over the dual-branch or direct-connecting counterpart, which
demonstrates the effectiveness of the proposed associative assembling strategy.
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Figure 5: Impacts of assembling strategies.
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Figure 6: Impacts of local part size in LAQ.

Effects of local part size. We study the effects of local part size by varying the kernel size
of the 1D convolution in Eq. (5) and experimented on iLIDS-VID. The experimental results
shown in Fig. 6 indicates our model’s robustness to this hyper-parameter within a wide range
of values thanks to the subsequent GCQ module which help refine the local alignment scores
according to global correlations. Given that improving S doesn’t benefit the performance but
increase the model’s complexity, we set S = 10 in practice.

Qualitative studies. Fig. 7 shows several video clips stacked with their activation maps
generated according to their local parts quality. Each frame’s local-aligned score (upper,
Eq. (6)) and global-correlated score (lower, Eq. (7)) are attached at their bottom-right corner.
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As exhibited, LOGA is robust to various kinds of noise by providing a faithful importance
score for assembling a discriminative representation. The activation maps accurately reveal
the critical regions for Re-ID. The global-correlated scores are obtained with the comple-
mentary appearance information so can reliably adjust the biased local-aligned scores. For
instance, as shown in Fig. 7, LAQ enables network to focus on the target instead of the
switched ID or the irreverent multi-detected ID as shown in the activation maps. For the
low quality frames caused by partial-detection, scale-variation and occlusion, etc. LAQ can
faithfully assess the local quality. The suitable importance score revealed by the associa-
tion of LAQ and GAQ efficiently guide LOGA to learn the representation from the most
discriminative region in the most discriminative frames.

Figure 7: Visualisation of video clips suffering from various noise. Their corresponding
importance in assembling are shown at the right-bottom corner of each frame with the local-
alignment scores at top and the global-correlation scores beneath (amplified by 1,000 times).

5 Conclusions
In this work, we present a novel Local-Global Associative Assembling (LOGA) method for
video person Re-ID through selectively assembling video frames of diverse qualities to de-
rive a more reliable and discriminative representation of a video tracklet. This is accom-
plished by assessing the frame’s quality according to both their local part alignments and
global appearance correlation so to refrain from integrating undesired visual information
into tracklet’s representation causing identity mismatch. Different from existing approaches
which explore either local or global information separately, our LOGA method constructs a
local-assembled global appearance prototype of a tracklet so to alleviate biased quality as-
sessment caused by either identity-irrelevant misalignment or spatial-insensitive appearance
miscorrelation. Extensive experiments on five benchmark datasets show the performance ad-
vantages of LOGA over a wide range of the state-of-the-art video Re-ID methods. Detailed
ablation studies are also conducted to provide in-depth discussions about the rationale and
essence of different components in our model design.
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