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Abstract

Generating static novel views from an already captured image is a hard task in com-
puter vision and graphics, in particular when the single input image has dynamic parts
such as persons or moving objects. In this paper, we tackle this problem by proposing a
new framework, called CycleMPI, that is capable of learning a multiplane image repre-
sentation from single images through a cyclic training strategy for self-supervision. Our
framework does not require stereo data for training, therefore it can be trained with mas-
sive visual data from the Internet, resulting in a better generalization capability even for
very challenging cases. Although our method does not require stereo data for supervi-
sion, it reaches results on stereo datasets comparable to the state of the art in a zero-shot
scenario. We evaluated our method on RealEstate10K and Mannequin Challenge datasets
for view synthesis and presented qualitative results on Places II dataset.

1 Introduction
Predicting novel views from a single image is a key problem in computer vision and graphics,
with potential applications related to image editing, photo animation, robotics, and virtual re-
ality. This challenging task requires estimating the scene geometry while filling in occluded
regions in the source image. For this reason, most of the current solutions require stereo data
during inference [17, 25, 29], which eases the process of estimating the depth of the scene
and helps inpainting occluded regions by gathering relevant visual information from differ-
ent points of view. However, in many applications such as animating an old photo, multiple
views are not available during inference.

Even during the training stage, multiple views of the same scene are not easy to obtain.
Despite the fact that state-of-the-art neural network models require a large number of images
in varied conditions for training, capturing a massive amount of stereo data with calibrated
and synchronized cameras is an onerous process. As an alternative, structure-from-motion
(SfM) and Multi-View Stereo (MVS) approaches such as COLMAP [22] have been used to
estimate the camera parameters from videos [34]. However, since MVS depends on corre-
spondence matching at different frames, MVS-based approaches might not be suitable for
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dynamic scenes with moving people and objects. Considering this limitation, one of the goals
of our method is to learn to generate static novel views from challenging scenes, including
snapshots of scenes with dynamic content or moving people, without explicitly depending
on stereo data for it.

Although a few methods have been proposed to tackle novel view synthesis from a sin-
gle image, they are based on point-cloud [18] or shape representations [24], which require
rendering techniques that are not easily integrated into current deep learning frameworks,
apart from limiting possible applications for the same reason, since some target devices have
limited 3D rendering capabilities. As an alternative, multiplane images (MPI) [26] have been
proposed to allow rendering of apparent 3D effects from a set of 2D images.

In this paper, we present CycleMPI, a new framework for learning an MPI representa-
tion in a self-supervised manner, which does not require multi-view stereo data for training.
Instead of relying on multiple views of the same scene for supervision, we propose to learn
an MPI with a cycle consistency supervision, as illustrated in Fig. 1, which depends only on
single images and their correspondent (estimated) depth maps. Our method can be trained
with massive data collected from the Internet, resulting in a robust solution even for zero-shot
evaluation, as demonstrated by our results on challenging benchmarks.

The main contributions of our work are summarized as follows. We propose a new
MPI learning framework based on cycle consistency loss. Through an extensive experimen-
tal evaluation, we demonstrated that our method can be trained with single view images
and estimated depth maps. Our approach achieved results close to the state of the art on
RealEstate10K in a zero-shot scenario, even when comparing to methods trained on this
dataset or using stereo depth predictions during inference. In the remaining of this paper,
we present a review of the literature in Section 2. In Section 3, we present our method. The
experiments and our conclusions are presented in Sections 4 and 5, respectively.

2 Related work
In this section, we go through some of the most relevant work related to our method.
Single-image view synthesis. The goal of single-image view synthesis is to generate images
of a scene from novel viewpoints using only one image as input. It states a harder problem
than interpolating between two or more views of the same scene, given that occluded infor-
mation that might be revealed on the multi-image setting is not available on single-image
approaches. Tucker and Snavely [28] proposed to learn an MPI representation from a stereo
pair of images and an additional depth supervision. Despite achieving good results on static
scenes, their method still requires multi-view stereo data for training, which hinders the gen-
eralization capability. Huang et al. [11] proposed a view synthesis method based on genera-
tive networks. In their approach, a scene is artificially generated from segmentation masks.
Differently, in our work, we target to generate an MPI from an existing photo. Other more
ad hoc methods generate an intermediate representation based on a predefined sequence of
steps, involving depth estimation, image inpainting, and additional filtering stages [16, 24].
This strategy usually results in better generalization, but has the drawback of requiring an
elevated computational cost during inference and complex designing requirements. A com-
mon characteristic of previous methods, as in [24, 28], is the requirement for precise depth
maps during training, which are generally estimated by structure-from-motion.
Monocular depth estimation. Single-image view synthesis is highly dependent on the
depth of the scene, as previously noted in [28]. In recent years, many works tackled monoc-
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ular depth estimation with leaning-based methods, in particular deep neural networks. The
use of standard convolutional networks with a scale-invariant loss function was first intro-
duced by Eigen et al. [7], followed by the use of more complex methods and architectures
that further improved the results [2, 4, 14]. To deal with poor generalization, Ranftl et al. [20]
combined multiple datasets using a flexible loss function, resulting in impressive zero-shot
performance. Recently, methods based on the Vision Transfomer (ViT) architecture [6] have
achieved state-of-the-art results for the task [21] [3]. Contemporary methods use monocular
depth estimation to improve robustness and generalization of stereo depth estimation [31]
and optical flow [1]. In a similar fashion, our work explore monocular depth estimation to
improve the generalization of novel view synthesis using MPI representation.
Cycle consistency loss. The use of cycle consistency loss, also referred to as reconstruction
loss in some contexts, has recently gained relevance as an objective function in unsupervised
and self-supervised problems. In general, this framework is used to learn transformations
over the original data without having necessarily a set of transformed samples for supervi-
sion. In order to obtain a supervision signal, the inverse transformation is applied to the
intermediate representations, allowing for the reconstruction of the input samples. In this di-
rection, cycle consistency has been used for image generation with conditional GANs, where
the learned transformation is the mapping from one object category to another [13, 35] or
even in a many-to-many fashion [5]. Hani et al [8] use a consistency loss on the features of
the learned transformation to perform novel-view synthesis of 3D shapes without a ground-
truth 3D model. Their method, however, diverges from ours by using a neural scene repre-
sentation and needing two images of an object during training. In our method, we explore
the idea of cycle consistency loss to allow a self-supervised training strategy that enables our
network to learn inpainting information from single-view images.

3 Method
The goal of our method is to synthesize novel views from a single image, through an interme-
diate MPI representation, without requiring stereo data during training. For this, we propose
a neural network that predicts an MPI from a single view. Our neural network is supervised
by two main components: depth estimation loss and visual consistency loss. The depth esti-
mation loss can be supervised with predictions (pseudo ground-truth) from a teacher model.
This prevents our method from requiring data with precise and dense depth maps, which is
hard to obtain on large scale and in varied conditions. The visual consistency is enforced
by image losses, which also include inverse projection and cyclic losses. In this section, we
briefly review the MPI representation and present our framework in detail.

3.1 Background on multiplane images
A multiplane image (MPI) [26, 34] can be defined as a set of front-parallel planes, where each
plane is an RGBA image, i.e., it encodes color and transparency, and is placed at a fixed depth
w.r.t. the camera. Different from other representations, like LDI [23] or point-cloud [18],
MPI is capable of encoding complex scenes, including transparency and soft edges, can be
easily rendered in a fully differentiable way, and benefits real-time applications.
MPI representation. Given an input image I of shape H×W ×3 and a neural network fθ ,
a multiplane image is obtained by:

{(ci,αi)}D
i=1 = fθ (I), (1)
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Figure 1: Proposed CycleMPI: a source image Is is fed into a neural network fθ , which
produces an MPI representation w.r.t. the source viewpoint vs. This MPI is then rendered in
the target viewpoint vt , resulting in Ît , which can be fed back into the network. The new MPI
produced w.r.t. to the target viewpoint is then rendered in the source viewpoint, closing the
loop for cyclic supervision. Depth maps are used as additional supervisions.

where ci and αi represent the RGB color and alpha values of the ith image plane, respec-
tively, and D is the total number of planes, assuming i = 1 the farthest plane. Since directly
predicting the RGBA values for each image plane would be highly over-parameterized, it is
more common to predict a background image and the alpha values of each image plane, as
in [34]. In such a manner, the colors of each plane are defined by a combination of the source
image I and the predicted background image Îb:

ci = wi� I+(1−wi)� Îb, (2)

where � is the Hadamard product. The blending weights wi are computed from αi [28]:

wi = α i

D

∏
j=i+1

(1−α j), (3)

which is essentially the over-composite operation in the alphas. Therefore, the actual output
of the neural network can be simply the background image Îb and the alpha values {αi}D

i=1.
Warping. The MPI representation can be rendered at different points of view through warp-
ing and compositing processes. Warping is implemented as a standard inverse homogra-
phy [9], where each image plane is projected from the source to a target viewpoint, consid-
ering a given intrinsic and extrinsic camera parameters and the depth di of each image plane.
More specifically, if we consider the warping operationWvs,vt from the source viewpoint vs
to the target viewpoint vt , the projected color and alpha planes are given by:

c′i =Wvs,vt (di,ci), α
′
i =Wvs,vt (di,αi). (4)

Since we consider images from unknown cameras and MPI layers at fixed depths, we can
assume standard intrinsics based on the image size and virtual viewpoints with normalized
camera pose. For more details about the warping process, please refer to [34] and [28].
Compositing. After warping, an MPI can be rendered into a target viewpoint vt by the over-
composite operation [19]. As noted in [28], the over-compositing operation can be performed
on both image and depth domains. In the latter, a depth map can be directly regressed from
the alpha channels, which is particularly useful to enforce structural constraints. Considering
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w′i as the blending weights from the warped alpha layers α ′ (from Equation 3), the predicted
target image and the regressed depth map (w.r.t. the source) are obtained by:

Ît =
D

∑
i=1

(c′iw
′
i), D̂s =

D

∑
i=1

(d−1
i αiwi), (5)

where d−1
i is the disparity of the ith plane (we use disparity and depth interchangeably).

3.2 Proposed approach
In our method, we assume that the ground truth for the target image It is not available.
Although this is a common scenario, where stereo data is not available for training, this case
cannot be handled by previous approaches based on MPI learning, as discussed in Section 2.
For making it possible to train our model from end-to-end and without requiring stereo data,
we propose two key strategies, described as follows.

First, we warp the source image into the target viewpoint, considering a Lambertian
projection of non-occluded regions, based on the corresponding depth map and using mor-
phological filtering to reduce artifacts. This allows us to recover an approximation of It ,
designated by I′t , which has been demonstrated by our experiments to be sufficient and effec-
tive for learning an MPI representation that encodes non-occluded regions from the source
image. This step is designated as forward pass in Fig. 1. Second, in order to enforce the net-
work to learn to generate color textures for occluded regions, we propose a training scheme
based on cycle consistency: the neural network should be able to predict an MPI from the
target image that allows recovering the source image. In other words, when considering a
cycle consistency training, instead of only feeding the source image as input to the neural
network, we also input the warped images I′t or Ît (simply referred as I(·)t ) into fθ , which pro-
duces an MPI w.r.t. the target viewpoint, which corresponds to the backward pass in Fig. 1.
Then, this MPI is projected back to the source viewpoint, where the supervision signal is the
source image Is.

Note that both the warped image I′t and the predicted view Ît can be used as input in this
process. To make the difference clear, we refer to the former as inverse projection training
and to the latter as cyclic training. This strategy enforces the network to learn to inpaint the
occluded regions since the source image has all the pixel information that was occluded in
I(·)t . This process is illustrated in Fig. 1, and the details of each part are presented next.

3.2.1 Self-supervision signal

Let us consider a source image Is captured from viewpoint vs. Our goal in this step is to
reconstruct an approximation of the target image It from viewpoint vt , so this reconstructed
image could be used as an auxiliary supervision signal. For this, we consider a depth map
Ds as additional information from the source viewpoint, which can be obtained with state-
of-the-art monocular depth estimation models (e.g., [21]). Then, each pixel from the source
image is warped to the target viewpoint vt , as illustrated in Fig. 2.
Image warping and filtering. A naive forward warping would result in sparkle image arti-
facts or “flying pixels”, as shown in Fig. 2 (c). Instead, we propose an alternative warping
process, where the source image is split into an MPI-like representation, directly obtained
by slicing the image accordingly to the depth map. More specifically, we quantize the depth
map Ds into integer values i ∈ [1, . . . ,D] expanding it as a binary representation q of shape
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H×W×D. Then, each binary mask qi (of shape H×W ) is filtered by a sequence of morpho-
logical operations to remove flying pixels and to expand the boundaries of connected regions
by a few pixels. In practice, we perform a morphological erosion followed by a dilation,
with equivalent filters of size 3× 3 and 7× 7, respectively. Note that the filters’ size might
be adapted to different image resolutions.
Background filling. The warped image and its mask (Fig. 2 d-e) would be enough for
training a network with L1 loss in the forward pass. However, we may need additional loss
functions to improve the quality of predictions, e.g., the VGG perceptual loss [12]. For this,
we require a dense target and predicted images. We followed the strategy proposed in [31]
for filling in the holes in the warped images with real image samples. In our case, we use the
source image of the same sample flipped horizontally. Although this strategy is very simple
and efficient, the results are generally plausible in a global perspective, as in Fig. 2 (f).

(a) (b) (c) (d) (e) (f)
Figure 2: Reconstruction of the target image from the source image (a) and depth map (b);
(c) naive forward projection and (d) forward projection after morphological filtering; (e) the
resulting mask of valid pixels and (f) the reconstructed approximation I′t of the target image.

3.2.2 Training with reverse projection and cyclic loss

The approximation of the target image reconstructed by our method does not provide a direct
supervision signal for learning to inpaint occluded regions in the scene, since it does not have
information corresponding to the occluded pixels in the source image. To handle this, we
propose a new training strategy, where the input of the network is the approximation I′t or
the prediction Ît , and Is is used for supervision. In this case, we can re-write Equation 1 as:

{(ct
i,α

t
i )}D

i=1 = fθ (I
(·)
t ), (6)

where ct
i and α t

i are the color and alpha values w.r.t. the target viewpoint. The same process
of warping and compositing an MPI, described in Section 3.1, can be applied to the new
(ct

i,α
t
i ) values, considering a proper swapping between the source and target viewpoints,

which results in the MPI {(c′ti ,α ′ti )}D
i=1. Finally, we can render the estimated image in the

source viewpoint and the depth map in the target viewpoint (from Equation 5):

Îs =
D

∑
i=1

(c′ti w′ti ), D̂t =
D

∑
i=1

(d−1
i α

t
i wt

i), (7)

where c′ti and w′ti represent the color values and blending weights after warping from the
target to the source viewpoint, and wt

i is the blending weights from the target viewpoint.
Depth map warping and filtering. From Equation 7, we can supervise Îs with the source
image Is. However, a supervision signal is not available for D̂t . A naive approach would be
to estimate Dt using a monocular depth estimation method from I′t . This approach would be
computationally expensive during training. Instead, we warp the depth map Ds to the target
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viewpoint, using a similar warping approach as described in Section 3.2.1. In this case, we
performed a morphological erosion and dilation with equivalent filters of size 3×3 and 5×5.
This process results in D′t , as illustrated in Fig. 1.

3.2.3 Neural network model

We implement the neural network fθ with the EfficientNet model [27] cut at block 5 as
encoder and a sequence of upsampling and depth-wise convolutions as the decoder. The
main outputs of the network are i) the background image with shape H ×W × 3 and ii)
the alpha values with shape H×W × (D− 1), since the last alpha value is always opaque.
In addition, the network also outputs intermediate depth predictions at scales H/2×W/2
and H/4×W/4, which are also supervised during training to help the network to learn the
structure of the scene with multi-resolution supervision. The intermediate depth predictions
are performed by casting depth regression as a multi-layer classification problem, similar
to [3]. More details about the network implementation and the intermediate supervisions are
in the supplementary material.

3.2.4 Training and loss functions

The network fθ can be trained in three different ways: i) direct projection, where the source
image Is is used as input and I′t and Ds are used as supervisions; ii) inverse projection, where
the reconstructed target image I′t is used as input and Is and D′t are used as supervision,
or iii) cyclic training, where we first perform a direct projection, then we do an inverse
projection using as input to the neural network the predicted view Ît . In practice, when
we refer to inverse projection training, we alternate between direct projection and inverse
projection randomly with equal probability. During training, we also generate random target
viewpoints vt (assuming vs as the identity) with small camera movements.

For supervising the estimated depth maps, we use a common loss function composed of
an L1 plus multi-scale gradient matching terms [14]:

Ldepth = ‖D− D̂‖+α ∑
k
(‖∇x(Dk− D̂k)‖+‖∇y(Dk− D̂k)‖), (8)

where D and D̂ are the reference and predicted depths, and k is the scale. Similarly to [14],
we used k = 4 scales and α = 0.5.

For supervising the image reconstruction, we used three different losses:

Lpix = ‖I− Î‖, Lvgg = ∑
j
‖Φ j(I)−Φ j(Î)‖, Lstyle = ∑

j
‖GΦ

j (I)−GΦ
j (Î)‖, (9)

where I and Î are the reference and predicted views, Φ is the 16-layer VGG model, GΦ is
the Gram matrix from VGG features, and j indexes the first three VGG blocks. Please refer
to [12] for more details about VGG and style losses. The final loss is given by:

Ltotal = Ldepth +Lpix +βLvgg + γLstyle (10)

4 Experiments
In this section, we evaluated our method considering a challenging case where no stereo
data is available for training, i.e., our model is trained using a single view dataset with no
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SSIM ↑ PSNR ↑ LPIPS ↓

Method n = 6 n = 10 n = 6 n = 10 n = 6 n = 10

Single-View Synthesis [28] 0.844 0.795 23.50 20.80 0.138 0.209
3D-Photography [24] 0.859 0.795 24.30 21.27 0.087 0.141
Adaptive-MPI [16] 0.804 0.735 21.09 18.23 0.113 0.187

Ours 0.842 0.786 22.79 19.96 0.115 0.176
Ours + fine-tuning on RE10K 0.845 0.788 22.85 19.89 0.129 0.196

Table 1: Comparison with previous methods on RealEstate10K. We fine-tuned our model
using 10% of training images from RE10K (without ground-truth depths). Note that [28] was
trained on RE10K with ground-truth depths and [24] uses multiple views during inference
to estimate depth.

Method FID ↓ SSIM ↑ PSNR ↑ LPIPS ↓

Single-View Synthesis [28] 21.24 0.617 13.56 0.514
Ours 16.10 0.633 14.02 0.479

Table 2: Comparison of MPI end-to-end approaches on Mannequin Challenge dataset.

ground truth depth nor target images, and is evaluated on well-known stereo datasets from
the literature, which characterizes a zero-shot evaluation scenario.

4.1 Datasets and evaluation metrics
Training datasets. For training, we consider two different datasets: Places II [33] and a
dataset with images from Flickr [16], here referred to as Flickr-Pictures dataset. The former
is composed of about 1.8M images and the latter has about 95K images in high resolution,
which were resized to 1024×768 at least, keeping the original ratio. For both datasets, we
computed the depth maps for supervision using the available model from [21].
Evaluation datasets. RealEstate10K [34] is a common dataset for novel view synthesis,
composed of 70K sequences extracted from YouTube videos. We used the evaluation set
composed of 1500 testing triplets proposed by [24], choosing the source and target images
to be 6 and 10 frames apart. We also evaluated our method on the Mannequin Challenge
dataset [15], which is traditionally a depth estimation dataset based on structure-from-motion
(SfM). This is a challenging dataset since it contains complex scenes with many people and
often with blurry images. The evaluation was performed on the official test split, choosing
the source and target frames to be 3 frames apart.

4.2 Implementation details
We trained our model using Adam as optimizer, with parameters β1 = 0.9, β2 = 0.999,
and learning rate 10−3, with batches of 4 images for about 10 million iterations. We set
the optimization parameters of our method as β = 0.01 and γ = 0.0001, according to our
ablation studies in the Appendices.

4.3 Comparison with previous methods
RealEstate10K. We compare our method with [28], [24], and [16] on RealEstate10K, eval-
uating the SSIM [30], PSNR, and LPIPS [32] metrics between the images produced by each
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Training strategy on Places II Validation on RE10K

Ldepth Lpix Lvgg Lstyle Inverse proj. Cyclic SSIM ↑ PSNR ↑ LPIPS ↓

X 0.734 17.699 0.237
X 0.758 19.349 0.280

X X 0.760 19.473 0.215
X X X 0.752 19.332 0.195
X X X X 0.735 18.748 0.183
X X X X X 0.761 19.556 0.182
X X X X X 0.765 19.773 0.182

Table 3: Ablation study considering different training strategies in our method.

method and the ground truth. The results are presented in Table 1. We replicated the results
from all previous methods using the author’s implementation and pre-trained models. Our re-
sults are close to the state of the art, even considering that [28] was trained on RealEstate10K
and [24] uses multiple views for depth estimation, while our method was trained only with
single images from Places II and does not use multiple views during inference. We also
fine-tuned our model using 10% of training images from RealEstate10K, which resulted in a
slight improvement in the SSIM metric.
Mannequin Challenge. One advantage of our self-supervised method is its capability to
generalize on challenging scenarios. To demonstrate this, we evaluated our method on the
Mannequin Challenge, which contains complex scenes with people and moving objects, and
is more than fifty times smaller than RealEstate10K, making it unfeasible for training deep
networks for view synthesis. Another challenge in this dataset is the wide variety of scene
scales, making it hard for any scale-free 3D representation to generate novel views correctly
aligned with the ground truth data. We refer to the Appendix for examples of the misalign-
ment problem. For this reason, we also reported results using the Fréchet Inception Distance
(FID) [10], an evaluation metric suited for ill-posed problems, to deal with misalignment
issues. We focus on MPI models trained end-to-end, comparing our self-supervised model
trained on Places II with Single-View Synthesis [28] trained on RealEstate10K. Results on
Table 2 show the superiority of our model in this challenging case.

4.4 Ablation studies
We also performed ablation experiments with different training strategies of our method to
better understand their relative importance, which is presented in Table 3. In all these exper-
iments, we trained our model with images from Places II for 500K iterations, using a fixed
image resolution of 384× 288 pixels. We tested several combinations of the loss functions
in the final loss, considering inverse projection and cyclic training. We can notice that depth
and pixel losses are complementary for learning. Although these two losses alone already
resulted in satisfying SSIM and PSNR metrics, the LPIPS result is poor, which reflects the
low texture quality of the generated views. For this, we included the VGG and style losses,
which increase LPIPS metric substantially. From our experiments, we noticed that LPIPS
is very sensitive to blurry images, therefore this metric is relevant for more realistic image
predictions. We can observe that both inverse projection and cyclic training have improved
all the metrics consistently, which supports our main idea.

In order to better understand the proposed cyclic training strategy in regard of the avail-
ability of target views and different depth estimation models, we performed additional ex-
periments in Table 4. First, we trained our model on RE10K considering a simple forward
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Training strategy Validation on RE10K

Training dataset Depth model Cyclic SSIM ↑ PSNR ↑ LPIPS ↓

RE10K DPT 0.767 20.729 0.207
RE10K DPT X 0.772 20.959 0.181

Places365 DPT 0.735 18.748 0.183
Places365 DPT X 0.765 19.773 0.182
Places365 AdaBins X 0.760 19.948 0.229

Table 4: Comparison of different training data and depth maps by DPT [21] and AdaBins [3].

training (first row) and cyclic training, which improved all the metrics. One could also ar-
gue that the DPT model [21] was trained with multiple datasets, including stereo data. We
show that our approach does not depend on stereo data by comparing DPT and AdaBins [3],
which was trained NYU depth, a Kinect based single depth dataset. From this evaluation, we
can observe that both models resulted in close SSIM and PSNR metrics, although AdaBins
degraded the LPIPS metric.

Finally, we presented some qualitative results from our method in Fig. 3. This evidences
the capability of our approach to generalize well on different and challenging types of im-
ages. The main failures of our method are due to wrong depth predictions of our model,
which is a consequence of incorrect pseudo ground-truth depth used during training. Blurry
images are also observed for large baselines, which is a common problem on MPI based
methods. Please see the supplementary material and video demonstration of the method for
more results.

Figure 3: Results on Places II: source image (top), new view (bottom), and selected planes.

5 Conclusions

In this paper, we presented a new method for learning an MPI representation with intermedi-
ate depth and cyclic supervision. The proposed method can be trained with single view data
by exploring inverse projection and cyclic training strategies for learning to inpaint occluded
regions in the scene. We compared our approach with recent methods for single view synthe-
sis from the literature. Our method was evaluated in a zero-shot scenario and achieved results
comparable to the results in the state of the art, even when compared to methods trained on
the target datasets. We also presented ablation studies to show the relative importance of
each component of the proposed framework, which evidenced the benefits of our method.
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