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Abstract

Existing methods for image synthesis utilized a style encoder based on stacks of
convolutions and pooling layers to generate style codes from input images. However,
the encoded vectors do not necessarily contain local information of the corresponding
images since small-scale objects are tended to "wash away" through such downscaling
procedures. In this paper, we propose deep image synthesis with superpixel based style
encoder, named as SuperStyleNet. First, we directly extract the style codes from the
original image based on superpixels to consider local objects. Second, we recover spatial
relationships in vectorized style codes based on graphical analysis. Thus, the proposed
network achieves high-quality image synthesis by mapping the style codes into seman-
tic labels. Experimental results show that the proposed method outperforms state-of-
the-art ones in terms of visual quality and quantitative measurements. Furthermore, we
achieve elaborate spatial style editing by adjusting style codes. The codes are available
at: https://github.com/BenjaminJonghyun/SuperStyleNet

1 Introduction
The goal of conditional image synthesis is to generate photo-realistic images conditioning
on certain input data. Recent methods utilized neural networks to generate realistic images
from other images, latent codes, edge maps, or pose key points [2, 5, 18, 20, 30, 38, 44, 46].
Especially, our interest lies in using semantic layouts to assist conditional image synthesis
[6, 20, 33, 44], which generates photo-realistic images from semantic masks. In addition, it
can manipulate semantic information in images, such as context generation and image edit-
ing, by controlling the segmentation masks. Although these methods generate high-quality
images, it cannot freely control image styles since the segmentation masks are only fed to
their networks. To achieve it, SPADE [32] and SelectionGAN [37] utilized a style image to
extract style information by using an encoder network. Then, a decoder network conducts
style reconstruction in semantic layouts by referring to the style information, and generates a
synthesized image similar to the style image. However, the style information is characterized
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Figure 1: Face image synthesis by the proposed network. The synthesized images are gener-
ated with segmentation masks of source images and their style information. In other manip-
ulated images, the style is controlled by replacing style codes in given segmentation masks
from source to style images.

to represent large-scale objects since downscaling by convolutions and pooling layers tends
to gradually "wash away" small-scale objects in feature maps. It indicates that the generator
shows a bias toward large-scale objects rather than smaller ones during the learning process.
Thus, it is difficult to conduct the style reconstruction of the local information. To equally
contain local and global information, current methods [39, 50] modified the existing encoder
or decoder to reconstruct local information from downscaled feature maps or encoded style
vectors. However, undesirable effects appear in the results by reconstructing local informa-
tion from high-level features (i.e., downscaled feature maps and encoded style vectors). In
this case, there exists little style information of the small-scale objects in the high-level fea-
tures. Thereby, it is difficult to expect that the local information can be well reconstructed
when the decoder conducts style mapping in the local ones.

To tackle this issue, a straightforward strategy is to encode the style information from
the original image while maintaining the original scale. However, it brings a large amount
of parameters in the style encoder. Therefore, we propose Superpixel based Parameter-free
Style Encoding (SPSE) to directly encode the original image into the style vector. We ap-
ply SLIC superpixel segmentation [1] to each segmentation mask for generating the style
vector per semantic region. It can provide a different view from the existing style-encoding
methods [22, 28, 34]. Furthermore, we analyze hidden representation of each node be-
tween nearest pixels to inject their spatial relationships to the style vector with a Graphical
Self-Attention Strategy (GSAS) because compressing an image to the style vector based on
superpixel wipes the spatial relationships off. Consequently, the proposed network is capable
of synthesizing a high-quality image by considering both local and global information.

We provide extensive experiments to prove the effectiveness of the proposed method on
challenging datasets: CelebAMask-HQ [26], Cityscapes [9] and CMP Facades [40]. We
evaluate the performance of the proposed network in terms of various metrics. Compared
with existing methods, our contributions can be summarized as follows:

• We propose superpixel based parameter-free style encoding, called as SPSE, to regu-
larly encode local and global style information of the input image into the style vector
with a parameter-free operation.

• We provide GSAS to compensate for loss of the spatial relationships between neighbor
pixels of the encoded style vector. This strategy uses graph based the self-attention
method to define them.
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• The proposed network achieves better performance in image synthesis than state-of-
the-art ones in terms of visual quality and quantitative measurements.

2 Related Work
Image-to-Image Translation is to learn a parametric mapping from input to output. Isola et
al. [20] first proposed image-to-image translation with a conditional generative adversarial
network (GAN) to translate the source to target domains. This task has been widely extended
by many researchers. Huang et al. [17] and Alharbi et al. [2] proposed multi-modal image-
to-image translation in an unsupervised way. Moreover, various methods [3, 7, 8] were pro-
posed to conduct multi-domain translation. As a specific task of the image-to-image trans-
lation, semantic image synthesis [4, 13, 26, 32, 36, 50] has become much popular in terms
of unconstrained image control. To be specific, SPADE [32] proposed spatially-adaptive de-
normalization to preserve semantic information of output images similar to input semantic
layouts. Furthermore, SEAN [50] improved SPADE by regionally normalizing parameters
to control the style of each semantic region individually. Although these methods showed
outstanding performance on semantic image synthesis, there exists shortcomings in the pro-
cess of style information encoding. The repeated downscalings with convolution layers in
the style encoding erase features of local information. To overcome this shortcoming, the
proposed method equally encodes local and global information into the style vector based
on superpixels.

Style Encoding is essential in image synthesis to extract style information from reference
images. Existing methods [12, 21] utilized a VGG [35] network pre-trained on image clas-
sification [10] to obtain style features. Unlike these methods, AdaIN [16] inferred affine
parameters from the style image to map input parameters into the style space, which enabled
arbitrary style transfer in real-time. On account of its easy application and outstanding per-
formance, this method was adopted in various tasks [17, 22, 25]. Furthermore, Park et al.
[32] and Zhu et al. [50] improved AdaIN to achieve semantic manipulation by normaliz-
ing the affine parameters in spatial or semantic regions, but neural networks are still indis-
pensable for the style encoding. Compared with the aforementioned methods, the proposed
method provides a new perspective in terms of non-parametric style encoding.

3 Proposed Method
We aim to regularly extract local and global style information per semantic mask from
the reference image. The encoded style is scattered into its corresponding masks to syn-
thesize photo-realistic images. To implement this concept, we first introduce the super-
pixel based parameter-free style encoding (SPSE) and the graphical self-attention strategy
(GSAS). Then, we describe the overall network architecture of a superpixel based style en-
coding network, named as SuperStyleNet.

3.1 Superpixel based Parameter-free Style Encoding
A superpixel can be defined as a group of pixels that share similar visual characteristics.
SLIC [1] is a representative superpixel method, which clusters pixels based on color similar-
ity and proximity. To be specific, the clustering procedure is conducted in a five-dimensional
space [l a b x y], where [l a b] is the pixel color vector in CIELAB color space and [x y] is the
pixel position. During the clustering, each pixel in the input image is assigned to k superpix-
els by calculating the l2 distance between each initial cluster center and its neighborhood.
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Figure 2: Illustration of the proposed Superpixel based Parameter-free Style Encoding
(SPSE). To extract style codes of a specific semantic mask, we convert the input image into
the five-dimensional space and cluster it in the semantic mask into superpixels. Thereafter,
pixel values in each superpixel are averaged to obtain a style code.

Inspired by this method, we propose superpixel based parameter-free style encoding (SPSE)
as illustrated in Fig. 2, which allocates an input image to k desired superpixels, and converts
them to the style code in the color space.

Let M ∈ IH×W×L be a semantic segmentation mask given the number of class labels L,
where I is a set of integers consisting of either "1" or "0", and H×W is the image size. Before
clustering the RGB input image X ∈ RH×W×3, we convert it into the five-dimensional space
X̂ ∈ RH×W×5, and superpixel centers are initialized with an uniform distribution [19]. After
that, we repeat the clustering in each segmentation mask by SLIC [1] to obtain superpixels
per semantic label:

SP = Clustering(X̂ [M == 1]), (1)

where SP ∈ RL×K is a set of superpixels in each class label with the number of superpixel
centers K. Then, each superpixel region is converted as label-specific segmentation masks
M̂ ∈ IH×W×L×K . To obtain the style information from the original image X , we segment
pixels from the input image referring to M̂, and take average on pixel values per label-specific
semantic region as follows:

SC = E[X [M̂ == 1]], (2)

where SC ∈ RL×K×3 is style codes. Then, it is reshaped to L×3K, and interpolated with the
desired length N of the style code in axis "1".

3.2 Graphical Self-Attention Strategy

Graph-based self-attention was proposed in [42], which computes the hidden representation
of each node in graphs and is used in natural language processing (NLP) tasks. Due to its ef-
fective nodal analysis and attention mechanism, this method was adapted to interpret spatial
representations, i.e., point cloud semantic segmentation [43], medical image segmentation
[31], human pose estimation [49], and trajectory forecasting [24].

Similarly, we propose a graphical self-attention strategy (GSAS), as described in Fig. 3,
to inject spatial hidden representations to the style vector. Let ai = {a1,a2, ...,aN} be the
style vector given a specific class label, where N is the length of the style vector. In order
to convert the style vector to the spatial domain, the style vector a is expanded as a N×N
matrix ai j, where i, j ∈ {1,2, ...,N}. After that, ai j is concatenated with its transposed matrix
aT

i j, then a 1× 1 convolution is used to analyze relationships between style components in
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Figure 3: Flow of the proposed graphical self-attention strategy. For better understanding,
we exemplify the style vector is set to be the length 3 given a specific class label. "Concat"
and "LReLU" are notated as the concatenation and LeakyReLU operation, respectively.

the style vector and reduce the channel size to 1. Thereafter, we apply the LeakyReLU
nonlinearity with α = 0.2. Thus, correlation coefficients can be described as:

ei j = LeakyReLU(W([ai j ‖ aT
i j])), (3)

where W is a 1× 1 convolution, and ‖ represents concatenation operation. Following the
Eq. 3, we obtain a correlation coefficient between i and j-th style components. To convert
the coefficients to comparable scores across different style components, we normalize them
across all j using the softmax function as follows:

si j =
exp(ei j)

∑k∈N exp(eik)
. (4)

Then, we conduct pixel-wise multiplication between aT
i j and si j and averaging across all j

to obtain a new style vector a′i considered all i 6= j-th style components. Before feeding the
style vector to the generator, the element-wise summation is operated to aggregate both style
vectors ai and a′i.

3.3 Network Structure and Learning Objective
In this paper, we concentrate on semantic image synthesis and spatial style editing. To
achieve them, we follow network structures in [32, 50] but exclude the style encoder as illus-
trated in Fig. 4, which employs several ResNet blocks [14] with upsampling layers. In each
ResNet block, the affine parameters are learned by embedding SEAN [50] to scatter the style
vector into the corresponding semantic layouts. Furthermore, we use the semantic layouts
as the input of the generator, and feed the concatenation of the layouts and the synthesized
images into the multi-scale discriminator [44].

With the help of SPSE, the embedding of the style encoder is not required since SPSE
utilizes superpixels in the color domain to generate the style vector with non-parametric
operation. Thus, the generator and discriminator excluding the style encoder are only con-
sidered in the training process. As the loss functions for the generator, we use perceptual loss
[21], feature matching loss [44], and conditional adversarial loss [50]. For the discriminator,
the hinge loss term [29, 47] is adopted. We provide further details of the network structure
and objectives in the supplemental materials.
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Figure 4: Illustration of the proposed SuperStyleNet. (left) Structure of a residual block
embedded in SuperStyleNet. (right) Overview of SuperStyleNet, which contains a series of
the residual blocks with 2× upsampling (nearest) layers.

4 Experiments
4.1 Implementation Details
In our experiments, following the experimental conditions in [50], the style length N is set
to 512, and the class labels are decided by the number of class in datasets. We apply spec-
tral normalization [29] to both the generator and discriminator, and a synchronized version
of batch normalization is applied to SEAN layers of the residual block. Following a two
time-scale update rule (TTUR) [15], the learning rates are set to 0.0001 and 0.0004 for the
generator and discriminator respectively. Adam optimizer [23] is adopted with β1 = 0 and
β2 = 0.999.

We train and test SuperStyleNet on the segmentation datasets: CelebAMask-HQ [26],
Cityscapes [9] and CMP Facades [40]. 1) CelebAMask-HQ is a face image dataset contain-
ing 30,000 face images with 19 segmentation labels, which is split into 28,000 and 2000
images for train and test sets, respectively. 2) Cityscapes contains 3500 images annotated
with 35 segmentation labels. For this dataset, the train and test set sizes are 3,000 and 500,
respectively. 3) CMP Facades consists of 500 facade images with 12 segmentation labels. In
this dataset, 400 and 100 images are utilized as train and test sets, respectively. All images
are resized to 256×256 in both training and testing.

4.2 Evaluation Metrics
Following previous works [32, 44, 50], we perform semantic segmentation on synthesized
images to quantify how well the predicted segments match ground-truth. Specifically, BiSeNet
[45] is applied to the synthesized images to infer semantic segmentation results, and pixel-
wise accuracy (pix acc) and mean intersection-over-union (mIoU) are utilized as its evalua-
tion metrics. Furthermore, we compare SuperStyleNet with these state-of-the-art methods by
adopting peak signal-to-noise ratio (PSNR), normalized root mean square error (NRMSE),
Fréchet Inception Distance (FID) [15], and learned perceptual image patch similarity (LPIPS)
[48].

Figure 5: Failure cases of image synthesis. The first and second examples represent gender
mismatch, while the last one is for age mismatch.
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Table 1: Quantitative comparison on semantic segmentation and generation performance.
Higher mIoU, higher pixel acc, and lower FID indicate better performance.

Method CelebAMask-HQ Cityscapes CMP Facades
mIoU pix acc FID mIoU pix acc FID mIoU pix acc FID

Ground Truth 70.05 36.75 8.71 50.46 91.50 34.20 36.75 71.28 75.07
Pix2PixHD 73.15 95.22 27.45 49.21 91.18 104.39 40.83 72.19 156.91
SPADE 74.55 95.72 33.94 55.02 92.93 51.18 42.38 75.48 124.96
SEAN 72.63 95.28 22.41 52.52 92.53 52.62 41.41 74.93 127.38
Ours 73.89 95.72 25.49 53.37 93.01 60.45 43.59 75.45 119.82

Table 2: Quantitative comparison on reconstruction performance and perceptual similarity.
Higher PSNR, lower NRMSE, and lower LPIPS indicate better performance.

Method
CelebAMask-HQ Cityscapes CMP Facades

PSNR NRMSE LPIPS PSNR NRMSE LPIPS PSNR NRMSE LPIPS
Pix2PixHD 15.78 0.451 0.359 16.25 0.447 0.393 12.23 0.507 0.441
SPADE 14.35 0.475 0.373 17.35 0.458 0.380 12.93 0.575 0.420
SEAN 18.54 0.248 0.274 20.08 0.348 0.331 14.36 0.459 0.402
Ours 18.22 0.263 0.255 20.83 0.325 0.349 15.26 0.408 0.392

4.3 Comparisons with State-of-the-art Methods

Quantitative comparisons. We quantitatively compare SuperStyleNet with the state-of-the-
art ones on semantic segmentation, generation, reconstruction performance, and perceptual
similarity. First, we select Pix2PixHD [44], SPADE [32], and SEAN [50] as current state-
of-the-art methods for comparisons. In Tables 1, it is obvious that SuperStyleNet generally
outperforms these state-of-the-art ones in maintaining segmentation masks. It indicates that
all objects including local ones are successfully reconstructed and recognized as these correct
classes. However, SuperStyleNet performs slightly worse than SEAN in CelebAMask-HQ
in terms of reconstruction metrics, while SuperStyleNet shows better performance in both
Cityscapes and CMP Facades as shown in Table 2. This is because SuperStyleNet infers
personal characteristics (i.e., genders and ages) from segmentation masks due to the lack of
the style encoding network. Therefore, SuperStyleNet yields failure cases as shown in Fig.
5, which causes degradation of the reconstruction performance. Overall, these results in-
dicate that our SuperStyleNet structure is effective in preserving segmentation masks while
generating high-fidelity synthesized images.
Qualitative comparisons. To validate the effectiveness of the proposed method in terms
of visual quality, we compare SuperStyleNet with the aforementioned state-of-the-art meth-
ods. As shown in Fig. 6, SuperStyleNet generates high-quality synthesized images on all
datasets compared with other methods. Concretely, SuperStyleNet is effective in recon-
structing occluded local areas by glasses, hands, or characters on CelebAMask-HQ due to
the help of SPSE. Furthermore, small-scale objects, such as human, car, and traffic lights,
are well synthesized in Cityscapes. Despite injecting style information, SEAN suffers from
color distortion when training on the small-scale dataset like CMP facades. In contrast, Su-
perStyleNet accurately recovers style information in each semantic layouts matched with its
ground-truth. This is because SPSE directly utilizes color values in the source images as
style information for style mapping. Overall, SuperStyleNet achieves better preservation of
semantic layouts while generating realistic synthesized images compared with the state-of-
the-art methods. More comparisons and synthesized images are shown in the supplementary
material.
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Figure 6: Qualitative comparison of semantic image synthesis with state-of-the-art methods
on three datasets.

Figure 7: Effects of GSAS on the visual quality.
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Figure 8: Visualization of superpixel segmentation using Felzenszwalb et al. [11] and SLIC
[1]. Both methods cluster pixels in given semantic layouts into superpixels.

4.4 Ablation Study
Effectiveness of SuperStyleNet. For validating the effectiveness of SuperStyleNet, we
adopt generator and discriminator of SEAN without a style encoding network as baseline
that is regarded as the state-of-the-art model. SPSE substitutes for the style encoding network
to extract style information from source images. It can be observed that the segmentation
performance is improved from 72.63/95.28 to 73.91/95.58 in mIoU and pixel-wise accuracy
on CelebAMask-HQ. Furthermore, its non-parametric operation allows SuperStyleNet to re-
duce 1.6M parameters while the style encoder increases the inference time around 3s/image
due to the CPU processing. In addition, we provide quantitative and qualitative analyses
to explore the effects of GSAS. When GSAS is embedded in our network, the reconstruc-
tion performance is improved from 18.15/0.285 to 18.22/0.263 in both PSNR and NRMSE
on CelebAMask-HQ, while maintaining the segmentation performance. Furthermore, the
visual quality is also enhanced as shown in Fig. 7. Specifically, artifacts and details are
recovered in the synthesized images due to its inference of spatial representations.
Variations of SPSE. SPSE utilizes a superpixel algorithm to encode an input image into
style vectors, thus it is mainly affected by the superpixel algorithm and its variations.

1) Selection of the superpixel algorithm: We consider that the number of superpixels
should be controllable to obtain the same length of style codes extracted from the same
categories in different images. However, conventional methods [11, 41] cannot control the
number of superpixels. It incurs information imbalance of style codes in each object since
style information is decided by the number of superpixels. Moreover, these methods irreg-
ularly encode pixels into superpixels as shown in Fig. 8. On the other hand, SLIC [1] and
LSC [27] not only initialize superpixel centers with uniform distributions but also control the
number of superpixels. Thereby, we adopt SLIC as the superpixel segmentation algorithm
for SPSE, which shows the faster processing than LSC.

2) The number of superpixel centers: This factor determines the amount of information
to represent encoded objects. It indicates that the larger number of superpixel centers k
is capable of more containing details of objects and diverse color information. Therefore,
the generator is able to better reconstruct synthesized images when k is larger. To fully
encode the local ones into k-vectors, we set k to the maximum value that does not exceed the
number of pixels on the smallest object across datasets. Thus, we empirically set k to 128.
To validate it, we conduct experiments on CelebAMask-HQ by changing the parameter k.
When k is reduced from 128 to 32, PSNR and mIoU decrease from 18.22 to 17.97 and 73.89
to 69.19. Furthermore, both performances are still lower although we increase k to 64.
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Figure 9: Image editing per semantic region. The style vectors are replaced from source to
style images on given segmentation masks.

Figure 10: Style mixing with multiple style images on given segmentation masks.

4.5 Style Mixing
SuperStyleNet is capable of editing images per semantic region or mixing styles of multiple
images. To achieve both image manipulations, we change input style vectors from source to
style images on given segmentation masks while other vectors retain source ones as shown
in 1 and 9. Furthermore, we mix multiple styles so as not to overlap semantic classes as
illustrated in 10. As can be seen from the figures, the edited images maintain textures and
structures of the source images while changing styles by referring to the style images with
given segmentation masks.

5 Conclusion
We propose superpixel based parameter-free style encoding (SPSE) for image synthesis to
evenly extract local and global style codes from the original image. To be specific, SPSE
clusters pixels in a given image to yield superpixels as style codes per semantic region.
Then, the graphical self-attention strategy (GSAS) interprets hidden representations between
superpixels to capture spatial relationships. Consequently, SPSE and GSAS facilitate our
network to generate high-quality synthesized images matched with target images while pre-
serving semantic layouts. Furthermore, it benefits from reconstruction in occluded regions
and small-scale objects. However, the proposed SuperStyleNet yields failure cases in the
inference of personal characteristics. In our future work, we will investigate this problem.
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[40] Radim Tyleček and Radim Šára. Spatial pattern templates for recognition of objects
with regular structure. In Proc. GCPR, Saarbrucken, Germany, 2013.

[41] Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for mode seeking.
In European conference on computer vision, pages 705–718. Springer, 2008.
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