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Abstract
In order to perform unconditional video generation, we must learn the distribution

of the real-world videos. In an effort to synthesize high-quality videos, various studies
attempted to learn a mapping function between noise and videos, including recent efforts
to separate motion distribution and appearance distribution. Previous methods, however,
learn motion dynamics in discretized, fixed-interval timesteps, which is contrary to the
continuous nature of motion of a physical body. In this paper, we propose a novel video
generation approach that learns separate distributions for motion and appearance, the
former modeled by neural Ordinary Differential Equation (ODE) to learn natural motion
dynamics. Specifically, we employ a two-stage approach where the first stage converts
a noise vector to a sequence of keypoints in arbitrary frame rates, and the second stage
synthesizes videos based on the given keypoints sequence and the appearance noise vec-
tor. Our model not only quantitatively outperforms recent baselines for video generation,
but also demonstrates versatile functionality such as dynamic frame rate manipulation
and motion transfer between two datasets, thus opening new doors to diverse video gen-
eration applications.

1 Introduction
Creating realistic videos from scratch (i.e., unconditional video generation (UVG)) requires
the model to learn the distribution of the video data. In other words, we are essentially learn-
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Figure 1: A walking human and corresponding keypoints. Rigid treatment of time as dis-
cretized, fixed-interval timesteps (the 1st and 5th steps) prevents the model from learning the
underlying motion dynamics by missing out frames at unseen timesteps (motion in the box).

ing a density function from which we can sample unseen videos. This is typically achieved
by employing an adversarial training framework, thanks to the advances in deep generative
models where GAN-based approaches have shown impressive performance in static image
generation [6, 12, 13, 16]. Video generation, however, differs from image generation since
we must consider the temporal aspect in addition to the spatial aspect.

Initial UVG approaches tried to learn a single density function for both temporal and spa-
tial aspects, where based on a single noise vector, a sequence of video frames were generated
at each timestep [24, 30]. Such approaches, however, were limited to generating short videos
with simple dynamics (e.g., linear motions such as moving trains). This limitation stems
most likely from failing to treat the two aspects effectively. Specifically, a video can be de-
composed into two orthogonal elements: the motion (i.e., movement of an object(s)) and the
appearance (i.e., background, style of the object(s), etc.), where the former is concerned with
the temporal aspect, and the latter the spatial aspect.

Based on this observation, a couple of recent works tried to learn separate distributions
(one for motion and another for appearance) and have shown improved video quality as well
as more natural motion dynamics [29, 33]. However, existing approaches, while separately
learning motion and appearance to some extent, fail to learn the true dynamics of motion as
they all treat videos as a sequence of frames bound by discretized, fixed-interval timesteps.
Such rigid treatment of the temporal aspect limits the model’s capacity to learn natural mo-
tions as indicated in Fig. 1, which eventually leads to generating videos of suboptimal quality.

In this paper, we propose Motion Ordinary Differential Equation GAN (MODE-GAN),
a novel two-stage UVG model that separately learns motion and appearance distributions. In
the first stage, the motion generator is responsible for converting the motion noise vector to
a sequence of keypoints (i.e., representation of motion). To learn continuous-time dynamics
of a physical body, we employ a neural ODE [5], which is a continuous-time model by inter-
preting the forward pass of the neural networks as solving an ODE. With neural ODE, our
motion generator can produce a motion in an arbitrary frame rate, which is especially useful
for generating non-linear motion dynamics (e.g., sports) where higher frame rates at certain
segments can help the viewer understanding. In the second stage, given a sequence of key-
points and an appearance noise vector, the motion-conditioned video generator synthesizes a
video sequence by combining the two. With this two-stage approach, MODE-GAN provides
full control of the spatio-temporal aspects of the generated video, such as mixing the motion
and appearance from two different datasets. This lends more power to the user to generate
diverse videos that even may not exist in the real world.
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To sum up, MODE-GAN not only generates high-quality videos with continuous motion
dynamics, but also learns completely independent motion density function and appearance
density function. We summarize our contributions to the domain of UVG as follows:

• We present a novel two-stage unconditional video generation framework MODE-
GAN, which demonstrates high-quality videos in terms of pixel distribution as well
as motion smoothness.

• By employing the neural ODE to generate continuous-time motions, MODE-GAN is
able to dynamically change the frame rate even when generating a single video sample.

• MODE-GAN learns completely independent density functions for motion and appear-
ance, enabling disentanglement of the spatio-temporal aspects of the generated video.

2 Related Work
Video Generation from Random Noise. The goal of unconditional video generation is to
learn a mapping function that generates a realistic video given a random noise vector. Ex-
isting approaches tried to decompose a video into several independent components. In an
earlier study, VGAN [30] decomposed a video into a foreground object and a background
during video synthesis. In addition, TGAN [24] tried to split each frame into a fast and slow
part. MoCoGAN [29] was the first approach to divide the video signal into appearance and
motion. Lastly, G3AN [33] proposed a three-stream video generator to promote the disentan-
glement of appearance and motion to improve video quality. Our work is distinguished from
previous approaches by learning completely independent density functions for motion and
appearance where the former is modeled in continuous-time via neural ODE. This choice
or architecture enables not only improved video quality with smooth motion dynamics in
arbitrary frame rates, but also transferring motion from one dataset to another.
Conditional Video Generation with Additional Input. Generating videos with the addi-
tional inputs such as semantic segmentation [19, 31, 32], pose keypoints [4, 27, 28] relates
to learning the marginal distributions instead of modeling the joint distributions [22]. There
exist a large body of work, where given a single video frame [14, 18, 36] or a sequence of
frames [15, 34, 35], the model predicts the in-between frames or future frames. Some works
among them are related to our work in that they predict video frames by extracting the pose
keypoints from an input image [14, 36]. Although these works for conditional video gener-
ation also handle video data, our contribution lies in learning separate density functions for
motion and appearance, rather than making predictions given an initial video frame(s).
Neural ODE. Neural ODEs [5] represent one of the continuous-depth deep learning models
which employ a neural network to model the dynamics (i.e., vector field) of the latent state.
Equipped with widely used numerical solvers such as Runge-Kutta and Dormand–Prince
method, neural ODE has the capacity to express the latent state in continuous-depth, or
equivalently continuous-time. The continuous nature of neural ODE paved a way to design
the continuous time-series modeling as shown in following studies [7, 9, 20, 23, 37]. La-
tent ODE [23] introduced ODE-RNN as an encoder and demonstrated the effectiveness of
handling the time-series data taken at non-uniform intervals. Furthermore, ODE2VAE [37]
and Vid-ODE [20] performed continuous-time video prediction conditioned on input video
frames, demonstrating the potential to apply neural ODE to computer vision.
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Figure 2: Overview of Stage I Motion generator creates a sequence of keypoints represent-
ing the motion of an object. (a) Sample a noise vector zm from N (0, I). (b) zm is mapped to an
initial point h0 via function P. (c) By integrating h0 over the target timesteps {s1,s2, . . . ,sT},
latent states for each timestep h1:T are obtained. (d) Latent states are projected via function
Q to a set of evolving keypoints k̂1:T .

3 Method
Problem Statement. Our task is unconditionally generating a video v̂1:T ∈ RT×3×H×W

given two noise vectors, the motion noise vector zm ∈ ZM and the appearance noise vector
za ∈ ZA, where T denotes the number of frames, H and W the height and width of the
generated image, respectively.
Model Overview. We employ a two-stage approach with two separate components: the
motion generator and the motion-conditioned video generator. Starting from zm, the motion
generator creates a sequence of keypoints, which conveys a plausible movement of an object.
Given the sequence of keypoints and za, the motion-conditioned video generator synthesizes
a realistic video following the geometric information in the keypoints. In the following, we
describe each stage in detail.

3.1 Stage I: Motion Generation

Fig. 2 depicts the overall process of motion generation via neural ODE. The motion generator
aims to learn a distribution of sequential 2D keypoints coordinates k1:T ∈RT×K×2, where K
denotes the number of keypoints, beginning with a noise vector zm drawn from N (0,I). As
an initial step, zm is fed into the initial value mapper P to generate the initial value h0 for the
ODE solver. Integrating over the target timesteps {s1,s2, . . . ,sT}, the ODE solver produces
a sequence of latent states h1:T which are then transformed into the a sequence of keypoints
k̂1:T ∈ RT×K×2 via a fully connected neural network Q. Overall, the motion generator is
described as

h0 = P(zm),

h1,h2, . . . ,hT = ODESolve( fθ ,h0,(s1,s2, . . . ,sT )),

each k̂t = Q(ht) t = 1,2, . . . ,T, (1)

where fθ indicates a fully-connected neural network to approximate dht/dt. A straightfor-
ward way to train the motion generator is to learn the distribution of real coordinates k1:T
via adversarial training. However, we observed that the 2D coordinates of the keypoints led
to unstable training, and therefore used 2D Gaussian heatmaps as an alternative representa-
tion. These K Gaussian heatmaps Ht ∈ RK×H×W are obtained by utilizing a Gaussian-like
function centered at kt , which can be formulated as

H(c,u)
t = exp

(
− 1

2σ2 ∥u−kc
t ∥2

)
, (2)
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Figure 3: Overview of Stage II (a) Given an appearance noise vector za and a sequence
of Gaussian keypoint heatmaps Ht from Stage I, the motion-conditioned video generator G
synthesizes a realistic video. (b) The video generator G consists of three streams: motion
(top), video (middle), and appearance (bottom). At first, za is fed into a neural network to
produce an appearance feature vector, which is reshaped to an initial video feature map M1

t .
Afterwards, a series of N up-sampling layers and composition blocks are used to generate a
single video frame at timestep t. (c) In the composition block, the resized Gaussian heatmap
H̃n

t and a projected appearance feature FCn(fa) are used together to determine learnable
parameters αγ and αβ , which are applied to the video feature Mn

t , transforming it according
to the motion and appearance information.

where u ∈ Ω is the pixel coordinates and kc
t indicates the coordinates of the c-th keypoint at

time t.
Loss Function. We use an adversarial loss to minimize the discrepancy between the distri-
bution of the real keypoints sequences and that of the generated ones. For this purpose, we
employ two discriminators D(I)

fr ,D
(I)
sq , where each receives Gaussian heatmaps in individual

frame and sequence level, respectively.1 Since ODE integration is solely determined by the
initial value, the initial values h0 need to be diverse in order to generate diverse motions. To
this end, we add an diversity loss of initial value Linitial

div to enforce two different motion noise
vectors zm,z′m ∈ ZM to be embedded in two different places in the initial value space.

Linitial
div =

∥zm − z′m∥1

∥P(zm)−P(z′m)∥1
(3)

The overall objective function for stage I is formulated as

min
P,Q, fθ

max
D(I)

fr ,D
(I)
sq

L(I)
adv +λ

initial
div Linitial

div , (4)

where L(I)
adv denotes the adversarial loss for stage I and λ initial

div is a hyperparamter controlling
the relative importance between the two losses.

1Detailed descriptions about adversarial losses are provided in the supplementary material.
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3.2 Stage II: Motion Conditioned Video Generation

As shown in Fig. 3(a), given a series of keypoints represented as Gaussian heatmaps H1:T ,
the motion-conditioned video generator G synthesizes a video v̂1:T where the object fol-
lows the geometric information of the keypoints sequence. Inspired by G3AN [33], we use
three parallel streams: a motion stream, a video stream, and an appearance stream. The three
streams undergo N number of upsample-then-compose blocks to generate the final video, as
depicted in Fig. 3(b). Specifically, the appearance noise vector za sampled from N (0, I) is
fed into a fully-connected neural network to produce an appearance feature vector fa ∈ RL,
used mainly in the appearance stream to inject appearance information to the video stream.
In the video stream, the initial video feature map M1

1:T ∈R L
4 ×T×2×2 is obtained by reshaping

fa, then stacking it across the time axis. In our implementation, we sequentially upsample the
feature map from the initial resolution 2×2 to the final resolution. The motion stream injects
the motion information from the Gaussian heatmaps into the video stream where at each in-
jection, the H ×W resolution heatmaps are resized to the spatial size of Mn

1:T , enabling the
model to consider the motion information in multi-scale. The injection of appearance and
motion information is conducted inside the composition block.
Composition Block. The composition block takes three inputs fa (appearance feature vec-
tor), Mn

1:T (video feature map), H̃n (resized Gaussian heatmaps), and combines them via
spatially adaptive denormalization [21] by estimating scale γ and shift parameters β , and
produces Mn+1

1:T . It consists of standardization over all frames (i.e., batch size × T dimen-
sion) followed by an adaptive scaling and shift. Let (B,Cn,Hn,Wn) be the number of frames,
the channel dimension, height and the width of Mn

1:T . Then, the transformed activation value
at each site (b ∈ B,c ∈Cn, i ∈ Hn, j ∈Wn) is given by

γc,i, j(fa,H̃n)
ob,c,i, j −µc

σc
+βc,i, j(fa,H̃n), (5)

where ob,c,i, j is an activation value at the site before transformation, the scale and shift pa-
rameters γc,i, j,βc,i, j are weighted sums of motion and appearance information obtained from
FCn(fa) and H̃n

t , and µc,σc are the mean and standard deviation of Mn
1:T along channel c,

respectively (See Fig. 3(c) for details).
Loss Function. The motion-conditioned video generator aims at generating a realistic video
retaining the motion information from H1:T .2 In addition, we employ the pixel-level diversity
loss to make output videos distinctive given two different appearance noise vectors za,z′a ∈
ZA.

Lpixel
div =

∥za − z′a∥1

∥G(za;H1:T )−G(z′a;H1:T )∥1
(6)

The complete objective function for stage II is described as

min
G

max
Dimg,Dvid

L(II)
adv +λ

pixel
div Lpixel

div , (7)

where L(II)
adv denotes the adversarial loss for stage II and λ

pixel
div adjusts the relative importance

between losses.
2Detailed descriptions about adversarial losses are provided in the supplementary material.
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Weizmann MUG UvA KTH

VGAN [30] 99.03 104.71 103.70 103.31
TGAN-v2 [25] 83.90 72.60 86.91 65.03
MoCoGAN [29] 93.93 35.12 49.58 36.90
G3AN [33] 64.07 21.76 39.24 44.84

MODE-GAN 55.06 17.90 15.38 28.28

Table 1: Video FID scores on 4 datasets. Lower values are better.

4 Experiments
Datasets. We evaluate our method on four datasets: 1) Weizmann Action [2] consists of
90 videos of 9 subjects performing 10 actions (e.g., walk, jumping-jack). 2) From KTH
Action [26], we select videos of 25 subjects performing three types of actions (boxing, hand
waving, and hand clapping) always having single person in the video. 3) MUG [1] contains
1,254 video sequences of six facial expressions, such as anger, disgust, and happiness. 4)
UvA-NEMO [8] is comprised of 1,240 videos of 400 smiling subjects. We resize the videos
to the 64×64 resolution for all datasets.

For training the motion generator, the ground truth keypoints are obtained by using a
pre-trained keypoint detector [3, 10, 17]. In particular, we use 13 out of 68 face keypoints 3

including eyes and nose to represent the facial expression for MUG and UvA-NEMO. And
we use 17 pose keypoints for Weizmann Action and KTH Action.

Figure 4: Qualitative comparison with baselines on human action datasets.

Evaluation on Fixed Frame Rate. We compare our model with unconditional video gen-
eration baselines [25, 29, 30, 33] on four datasets. We followed the hyperparameters as pre-
sented in the papers. Table 1 shows qualitative comparison of MODE-GAN with VGAN [30],
TGAN-v2 [25], MoCoGAN [29] and G3AN [33] on four different datasets by measuring
video Fréchet Inception Distance (FID) [33], which is a widely used metric for evaluating
the quality of videos. As seen in Table 1, MODE-GAN consistently outperforms all base-
line models. This indicates our synthetic videos are not just visually realistic but keeps the
same realistic quality consistently across time compared to the baselines. Also, Fig. 4 shows
visual comparisons using human action dataset, where MODE-GAN produces the competi-
tive results compared to the baseline models.4 This state-of-the-art performance shows that
explicitly decomposing the video generation process into spatial (i.e. appearance) and tem-

32, 9, 16, 20, 25, 38, 42, 45, 47, 49, 52, 55, 58th facial landmark locations detected using open face align-
ment library (https://github.com/1adrianb/face-alignment). We provide a detailed illustration in
supplementary material.

4Other visual comparisons using facial expression dataset are shown in the supplementary material.
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(a) Recurrent neural network (b) Neural ODE

Figure 5: Comparison of generated pendulum dynamics (Left: sampled θ and θ̇ , Right: vi-
sualization of the bob movement in the gray area of the left. (a) RNN fails to preserve the
smoothness of the pendulum movement (θ and θ̇ severely fluctuate across time), yielding a
rigid and irregular movement of the bob (b) Neural ODE successfully mimics the pendulum
movement maintaining continuous and smooth bob motion.

poral (i.e. motion) components, and modeling the latter in the natural continuous-time leads
to more realistic synthetic outcomes.
Effectiveness of ODE in Learning Dynamics. We compare the effectiveness of neural
ODE with recurrent neural networks (RNNs) in learning the distribution of dynamics start-
ing from a random noise. Motivated by previous work [11] that interprets human motion as
a relative pendulum dynamics of keypoints, we take a pendulum system which is mathemat-
ically formulated as

θ̈ +

(
B
M

)
· θ̇ +

(
g
L

)
· sin(θ) = 0, (8)

where θ , B, g, L, and M are the angular displacement, damping factor, gravity force, length of
pendulum, and mass of bob, respectively. Our goal is to train the generator which is capable
of simulating the dynamics of the pendulum system. For this purpose, the model aims at
producing θ and θ̇ , a plausible physical parameters for the pendulum system. In experiment,
g is a constant and fixed to 9.81 m/s2, whereas B, L, and M are stochastically determined
by sampling each factor from Gaussian distribution with means of 0.2, 1.0, 1.0 and unit
variance, respectively. As a baseline, we employ an RNN-based motion generator, where we
substitute the neural ODE in stage I with an RNN. The RNN takes Gaussian noises at each
time step and aims to generate a plausible θ and θ̇ .

As seen in Fig. 5(a), the RNN-based motion generator fails to generate smooth dy-
namics, running off the expected trail of the pendulum dynamics. On the other hand, as in
Fig 5(b), our ODE-based motion generator successfully simulates the pendulum dynamics.
This demonstrates that neural ODE has a benefit in learning the continuous motion dynamics
compared to RNN. As seen in Fig. 5, RNN fails to smoothly interpolate the pendulum trajec-
tory (a) whereas neural ODE successfully simulates the smooth dynamics of the pendulum
(b), which indicates the potential of neural ODE for learning the dynamics of real-world
videos smoothly. In other words, the capacity of learning the smooth dynamics can be ex-
tended to simulate the unseen dynamics between two frames in more natural manner without
rather unnatural rigid and irregular movements. Such capability can be seen in Fig. 6, where
the motion generator successfully fills the plausible keypoints at unseen timesteps. Detailed
descriptions about data generation process and model architectures are provided in supple-
mentary material.
Diverse Motions in Continuous-time Space. The motion generator is to learn the distribu-
tion of motions, thereby generating a plausible motion. Specifically, neural ODE allows the
motion generator to model dynamics of keypoints in continuous-time domain. Fig. 6 shows
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(a) Weizmann Action (b) KTH Action

Figure 6: Examples of sequence of continuously evolving keypoints: We sample a sequence
of 64 keypoints from MODE-GAN trained at 16 FPS. To visualize the keypoints dynamics,
every 4th frame (i.e. 16 / 64) are marked in bold, while other frames are faintly illustrated.

(a) Fixed Motion (b) Fixed Appearance

Figure 7: An example of manipulating motion and appearance: (a) Fixed motion (facial ex-
pression) with different appearances, (b) Fixed appearance with different motions.

(a) MUG: Surprise ⇒ UvA-NEMO (b) Weizmann: One hand waving ⇒ KTH

Figure 8: Motion transfer results across different video domains (First row: generated out-
put at source domain, Second row: corresponding keypoints sequence, Third row: generated
output at target domain).

keypoints representations of various motions as we integrate densely across time, trained on
Weizmann Action and KTH Action datasets. We see the sampled motions are natural and fluid,
demonstrating that the motion generator has successfully learned the underlying distribution
of video motions.
Motion and Appearance Manipulation. Recall that our model synthesizes a video by
combining separate representations for motion and appearance. In this experiment, we demon-
strate our model’s capability to generate videos while maintaining one component (i.e., mo-
tion or appearance), by fixing either zm or za and varying the other.

As shown in Fig. 7, we observe different combinations can successfully produce videos
preserving the fixed component, while altering the other. These results indicate that we can
successfully manipulate the video generation process by controlling appearance and motion
independently.
Motion Transfer between Different Video Domains. One of the distinguishing applica-
tions of MODE-GAN is to import a non-existing motion to a different video domain. Such
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(a) Weizmann: Two hand waving

(b) Weizmann: Bending

Figure 9: Videos generated in diverse frame rates by MODE-GAN, trained at 16 FPS.

application stems from the fact that motion-conditioned video generators share the common
motion space expressed as keypoints representations. Therefore, by connecting the motion
generator trained on one video domain with the motion-conditioned video generator trained
on another one, we can combine motion and appearance from each video domain.

Fig. 8 shows motion transfer examples in facial expression and human action datasets. (a)
Although UvA-NEMO contains only smile motion, surprise expression can be imported by
adopting the motion model trained on MUG dataset. (b) In a similar manner, we synthesize
the KTH Action domain video using one hand waving motion adopted from the Weizmann
Action domain.
Arbitrary Frame Rate Video Generation. Another application of our model is to gener-
ate videos in arbitrary frame rates based on the continuously generated keypoints from the
motion generator. As illustrated in Fig. 9, our model is capable of synthesizing a video at
various frame rates, densely dividing the continuous-time domain. Synthesized videos suc-
cessfully fill in the frame at arbitrary timesteps, demonstrating that our model understand the
underlying dynamics of motion (i.e., two hand waving). Furthermore, we can dynamically
control the frame rate even for a single video (e.g. from slow to fast motion) by controlling
integration time span of the motion generator. Such results are provided in supplementary
material as a video.

5 Summary and Future Work
In this paper, we propose a novel framework MODE-GAN for unconditional video gen-
eration. Based on the observation that real world videos can be decomposed into spatial
(i.e. static appearance) and temporal (i.e. continuous motion dynamics) aspects, we employ
neural ODE to handle the continuous nature of video motion. In addition, a two-stage ap-
proach enables MODE-GAN to focus on modeling the motion itself, allowing our model to
separately learn motion and appearance distributions. Experimental results not only demon-
strate its ability to generate high-quality videos but also its versatile functionality including
continuous-time and cross-domain video generation.
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Current motion generator of MODE-GAN focuses on modeling the single person’s dy-
namics, yet it bears a potential to be used for modelling the dynamics of multiple people and
complex videos. As a future direction, we plan to explore how to generate highly complicated
real world semantics in continuous-time domain.
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[8] Hamdi Dibeklioğlu, Albert Ali Salah, and Theo Gevers. Are you really smiling at me?
spontaneous versus posed enjoyment smiles. In Proc. of the European Conference on
Computer Vision (ECCV), 2012.

[9] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural ODEs. In
Advances in Neural Information Processing Systems (NIPS), 2019.



12 KIM ET AL: CONTINUOUS-TIME VIDEO GENERATION

[10] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu. RMPE: Regional multi-person
pose estimation. In Proc. of the IEEE International Conference on Computer Vision
(ICCV), 2017.

[11] Gunnar Johansson. Visual perception of biological motion and a model for its analysis.
Perception & psychophysics, 14(2):201–211, 1973.

[12] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In Proc. of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[13] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. Analyzing and improving the image quality of styleGAN. In Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[14] Yunji Kim, Seonghyeon Nam, In Cho, and Seon Joo Kim. Unsupervised keypoint learn-
ing for guiding class-conditional video prediction. In Advances in Neural Information
Processing Systems (NIPS), 2019.

[15] Yong-Hoon Kwon and Min-Gyu Park. Predicting future frames using retrospective
cycle GAN. In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[16] Hsin-Ying Lee, Hung-Yu Tseng, Qi Mao, Jia-Bin Huang, Yu-Ding Lu, Maneesh Singh,
and Ming-Hsuan Yang. Drit++: Diverse image-to-image translation via disentangled
representations. International Journal of Computer Vision (IJCV), pages 1–16, 2020.

[17] Jiefeng Li, Can Wang, Hao Zhu, Yihuan Mao, Hao-Shu Fang, and Cewu Lu.
CrowdPose: Efficient crowded scenes pose estimation and a new benchmark.
arXiv:1812.00324, 2018.

[18] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang.
Flow-grounded spatial-temporal video prediction from still images. In Proc. of the
European Conference on Computer Vision (ECCV), 2018.

[19] Junting Pan, Chengyu Wang, Xu Jia, Jing Shao, Lu Sheng, Junjie Yan, and Xiaogang
Wang. Video generation from single semantic label map. In Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[20] Sunghyun Park, Kangyeol Kim, Junsoo Lee, Jaegul Choo, Joonseok Lee, Sookyung
Kim, and Edward Choi. Vid-ODE: Continuous-time video generation with neural or-
dinary differential equation. arXiv:2010.08188, 2020.

[21] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image
synthesis with spatially-adaptive normalization. In Proc. of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2337–2346, 2019.

[22] Yunchen Pu, Shuyang Dai, Zhe Gan, Weiyao Wang, Guoyin Wang, Yizhe Zhang, Ri-
cardo Henao, and Lawrence Carin Duke. Jointgan: Multi-domain joint distribution
learning with generative adversarial nets. In Proc. of the International Conference on
Machine Learning (ICML), 2018.



KIM ET AL: CONTINUOUS-TIME VIDEO GENERATION 13

[23] Yulia Rubanova, Tian Qi Chen, and David K Duvenaud. Latent ordinary differential
equations for irregularly-sampled time series. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2019.

[24] Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Temporal generative adversarial
nets with singular value clipping. In Proc. of the IEEE International Conference on
Computer Vision (ICCV), 2017.

[25] Masaki Saito, Shunta Saito, Masanori Koyama, and Sosuke Kobayashi. Train sparsely,
generate densely: Memory-efficient unsupervised training of high-resolution temporal
GAN. International Journal of Computer Vision (IJCV), 2020.

[26] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: a
local svm approach. In Proceedings of the 17th International Conference on Pattern
Recognition, 2004. ICPR 2004., volume 3, pages 32–36. IEEE, 2004.

[27] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu
Sebe. Animating arbitrary objects via deep motion transfer. In Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[28] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu
Sebe. First order motion model for image animation. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2019.

[29] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. MoCoGAN: Decom-
posing motion and content for video generation. In Proc. of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[30] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene
dynamics. In Advances in Neural Information Processing Systems (NIPS), 2016.

[31] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz,
and Bryan Catanzaro. Video-to-video synthesis. In Advances in Neural Information
Processing Systems (NIPS), 2018.

[32] Ting-Chun Wang, Ming-Yu Liu, Andrew Tao, Guilin Liu, Bryan Catanzaro, and Jan
Kautz. Few-shot video-to-video synthesis. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2019.

[33] Yaohui Wang, Piotr Bilinski, Francois Bremond, and Antitza Dantcheva. G3AN: Dis-
entangling appearance and motion for video generation. In Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[34] Yunbo Wang, Lu Jiang, Ming-Hsuan Yang, Li-Jia Li, Mingsheng Long, and Li Fei-
Fei. Eidetic 3D LSTM: A model for video prediction and beyond. In Proc. of the
International Conference on Learning Representations (ICLR), 2019.

[35] Yunbo Wang, Jianjin Zhang, Hongyu Zhu, Mingsheng Long, Jianmin Wang, and
Philip S Yu. Memory in memory: A predictive neural network for learning higher-order
non-stationarity from spatiotemporal dynamics. In Proc. of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.



14 KIM ET AL: CONTINUOUS-TIME VIDEO GENERATION

[36] Ceyuan Yang, Zhe Wang, Xinge Zhu, Chen Huang, Jianping Shi, and Dahua Lin. Pose
guided human video generation. In Proc. of the European Conference on Computer
Vision (ECCV), 2018.

[37] Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki. ODE2VAE: Deep generative
second order odes with bayesian neural networks. In Advances in Neural Information
Processing Systems (NIPS), 2019.


