
LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION 1

Learning to Hide Residual for Boosting
Image Compression

Yi-Lun Lee1

vongola850704@gmail.com

Yen-Chung Chen1

yenc.cs06g@nctu.edu.tw

Min-Yuan Tseng1

piews482zt@gmail.com

Yi-Hsuan Tsai2

wasidennis@gmail.com

Wei-Chen Chiu1

walon@cs.nctu.edu.tw

1 National Yang Ming
Chiao Tung University

2 Phiar Technologies, Inc.

Abstract

Lossy compression usually leads to severe compression artifacts, such as blocking
boundary, mosquito noise, and blur. Reducing compression artifacts is essential for bet-
ter visual experience and quality when transmitting data under limited bandwidth, where
the sender compresses an image and transmits it via a communication channel to the
receiver side. To tackle this problem, most existing methods aim to directly recover de-
tails from received compressed image, instead of fully exploiting the rich information
contained in the uncompressed image. In this paper, we focus on leveraging the resid-
ual information, i.e. the difference between a compressed image and its corresponding
original/uncompressed one, and propose to hide the residual into the original image by
a novel framework. As such, our model that considers this resultant image with the hid-
den information has a better ability to recover the residual caused by the compression
process. Afterwards, the hidden residual could be decoded from the received image and
used to boost the quality of image reconstruction on the receiver side. Extensive exper-
iments verify the efficacy of our proposed framework in reducing compression artifacts
and showing favorable performance against numerous baselines.

1 Introduction
Image has long been an indispensable part of our daily lives in which people record events,
share knowledge, and the media of communication. Along with the development of record-
ing technology and the demand for better visual experience, the resolution of image data
grows higher and higher which naturally leads to larger size. However, since the storage
space is not limitless and the communication channel is usually with constrained bandwidth,
image compression is crucial for data transmission and data storage.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION

Decades of efforts have been devoted to advance the image compression techniques and
bring out various image coding standards, such as BPG [3], JPEG-2000 [1], and JPEG [17].
Without loss of generality, most compression methods belong to the lossy compression
scheme, where the file size is reduced by discarding redundant information or some im-
age details. Normally, the degradation in image quality caused by compression should be
unnoticeable by end-users. However, as the demand of transmitting and storing more data
grows (e.g. real-time communication), having artifacts in the compressed images becomes
an inevitable issue due to the heavy compression process.

Given a general scenario where a sender first compresses an image and transmits it to
a receiver, the visual difference between a compressed image and the corresponding orig-
inal/uncompressed one is known as residual. Various approaches [7, 14, 19] are proposed
to compensate the visual difference by having post-processing models to estimate the pos-
sible residual from the compressed image; while we also witness the work [16] that aims
to directly transmit the residual in a compact form along with the compressed image. This
work has the advantage of preserving the real residual, while the post-processing approaches
could produce the estimated residual that could be quite different from the original one.
However, [16] requires non-negligible bitrates to transmit the residual. Moreover, it would
need additional efforts to design the compression approach (e.g. quantization and entropy
encoding) and modify the communication protocol to support the residual transmission.

We advance along the direction of dealing with the real residual in this paper. We propose
a novel framework which needs not transmit the residual separately from the data stream of
the compressed image, and instead we directly hide the residual into the original image, prior
to the image compression. As such, we are no longer concerned about the transmission of
the residual. Moreover, our framework learns to hide useful residual information into the
original image in a way that we can still successfully decode back the residual related to the
hidden information after applying compression to the resultant image.

Particularly, our framework is orchestrated to boost the visual quality of images com-
pressed by any off-the-shelf compression methods, in which it can be treated as a compres-
sion enhancement approach. In order to show the flexibility and generalizability of our pro-
posed method, we experiment upon different image compression methods, including JPEG,
JPEG-2000, BPG, CAE-B [20], CAE-P [20], and RNN [15], where the last three are deep-
learning-based compression models. We conduct extensive experiments on Kodak [11] and
Kinetics [9] datasets under various settings, and the quantitative evaluation demonstrates the
efficacy of our method in comparison to several post-processing-based approaches.

2 Related Work
As motivated above, in comparison to the works of developing a whole new compression
codec from scratch (e.g. [2], [13], [20], [15]) or the ones transmitting the residual infor-
mation explicitly (e.g. [16]), our method proposed can be integrated with any off-the-shelf
compression codecs and needs no additional transmission of residual, in which such scheme
is actually similar to the post-processing methods.

Basically, the post-processing methods aim to reduce compression artifacts at the re-
ceiver/decoder end directly. Earlier approaches such as [5] adopt adaptive filters in order to
simultaneously smooth out the artifacts and preserve the image details, while [4] propose a
two-step method that learns a dictionary to represent typical features of compressed JPEG
image and favors the decompressed procedure. To further enhance the performance, deep-

Citation
Citation
{Bellard} 2014

Citation
Citation
{Acharya and Tsai} 2004

Citation
Citation
{Wallace} 1991

Citation
Citation
{Dong, Deng, Changeprotect unhbox voidb@x protect penalty @M {}Loy, and Tang} 2015

Citation
Citation
{Tai, Yang, Liu, and Xu} 2017

Citation
Citation
{Zhang, Zuo, Chen, Meng, and Zhang} 2017

Citation
Citation
{Tsai, Liu, Sun, Yang, and Kautz} 2018

Citation
Citation
{Tsai, Liu, Sun, Yang, and Kautz} 2018

Citation
Citation
{Zhao} 2019

Citation
Citation
{Zhao} 2019

Citation
Citation
{Toderici, Vincent, Johnston, Jinprotect unhbox voidb@x protect penalty @M {}Hwang, Minnen, Shor, and Covell} 2017

Citation
Citation
{Kodak} 1993

Citation
Citation
{Kay, Carreira, Simonyan, Zhang, Hillier, Vijayanarasimhan, Viola, Green, Back, Natsev, etprotect unhbox voidb@x protect penalty @M {}al.} 2017

Citation
Citation
{Ball{é}, Minnen, Singh, Hwang, and Johnston} 2018

Citation
Citation
{Minnen, Ball{é}, and Toderici} 2018

Citation
Citation
{Zhao} 2019

Citation
Citation
{Toderici, Vincent, Johnston, Jinprotect unhbox voidb@x protect penalty @M {}Hwang, Minnen, Shor, and Covell} 2017

Citation
Citation
{Tsai, Liu, Sun, Yang, and Kautz} 2018

Citation
Citation
{Chen, Wu, and Qiu} 2001

Citation
Citation
{Chang, Ng, and Zeng} 2013

LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION 3

Figure 1: Overview of the proposed framework. Starting from the encryption process, the
encryption encoder E hides the residual IR into the original image IH and outputs the en-
coded image IH

enc, where IR is the difference between IH and its compression IL produce by a
specific compression codec (e.g. JPEG or BPG). IH

enc is then fed into the compression codec
component and obtain its compressed version IL

enc. Followed by the decryption process, the
original image is reconstructed as I′H by combining IL

enc with the decoded hidden information
I′R via the decryption decoder D.
learning-based methods are developed recently. [12] utilize skip connection, which helps not
only recover clean image details but also the training process of deep convolutional neural
networks. Built upon SR-CNN [6], [7] focus on feature enhancement, which maps noisy
low-level features to another learnt feature space for eliminating compression artifacts. With
the concept of residual learning, [19] propose a deep CNN model (DnCNN) by adding batch
normalization in order to handle multiple image restoration tasks, e.g., JPEG de-blocking.
On the other hand, [14] propose a deep persistent network (MemNet) which utilizes proposed
memory blocks to mine persistent memory via an adaptive learning process.

Our proposed method in this paper shares a similar goal to the above-mentioned ap-
proaches that aim to post-process the compressed image and reconstruct back an output with
less artifacts, but clearly distinguish itself from the others by having a new solution of hiding
the residual information prior to the image compression process, which provides effective
cues for our decoder to reduce the output artifacts. In addition, since we take advantages of
existing image compression codecs (i.e. explicitly considering the compression codecs into
our framework training), our proposed method can be applicable to various types of codecs
and boost them, including the traditional and deep-learning-based ones.

3 Proposed Method

Our goal is learning to hide the residual in the original/uncompressed image where the hidden
information should still exist after compression, such that the residual could be decoded back
on the receiver side to further boost the visual quality of the reconstructed image. To this
end, we propose a framework consisting of three components, as depicted in Fig. 1: 1)
an encryption process, 2) compression proxy, and 3) a decryption process. Note that the
detailed architecture of the networks used in these three components are provided in the
supplementary material. We now provide more details for each component in our proposed
framework in the following subsections.

3.1 Encryption Process

Given an image compression method such as BPG to compress an image IH , our encryption
encoder E aims to hide the residual information IR, i.e. the difference between an image IH

and its compressed version IL, into the image IH . The encryption encoder E takes the residual

Citation
Citation
{Mao, Shen, and Yang} 2016

Citation
Citation
{Dong, Loy, He, and Tang} 2014

Citation
Citation
{Dong, Deng, Changeprotect unhbox voidb@x protect penalty @M {}Loy, and Tang} 2015

Citation
Citation
{Zhang, Zuo, Chen, Meng, and Zhang} 2017

Citation
Citation
{Tai, Yang, Liu, and Xu} 2017

4 LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION

Figure 2: When the compression codec belongs to the deep-learning-based codec, we can
directly adopt it as the compression proxy component during model training. Instead, if
the traditional codec is used during compression, two different strategioes (i.e. Strategy I
and Strategy II) are proposed as the compression proxy, in order to enable the end-to-end
training. For both strategies, we provide the forward and backward flows during training, as
well as the the forward flow for testing. Please refer to Section 3.3 for more details.

IR and original/uncompressed image IH as the input, and outputs an encoded uncompressed
image IH

enc which contains hidden residual information, i.e. IH
enc = E

(
IH , IR

)
. Please refer to

the left of Fig. 1 for the illustration of our encryption process.
Now the IH

enc becomes the target that we would like to compress on the sender side and
transmit afterwards to the receiver side. Assume the communication channel is lossless, i.e.
the data is never lost during the transmission, the receiver side will obtain a compressed
version of IH

enc, which is denoted as IL
enc.

3.2 Decryption Process

When IL
enc arrives the receiver side, our decryption decoder D attempts to decrypt from IL

enc
the hidden information, which is denoted as I′R. As I′R is related to the residual, i.e. the
difference between IL and IH caused by the compression, we hence expect to well recover
the original input image IH by adding up IL

enc and I′R. Here, we denote the reconstruction
produced by IL

enc+I′R as I′H . Although I′R is not exactly the same as IR (as IL
enc is not identical

to IL), the entire network is end-to-end trainable, so that the encoder can still learn to encrypt
useful information of IR into IH

enc. Please refer to the right of Fig. 1 for the illustration of our
decryption process.

3.3 Compression Proxy

As illustrated in Fig. 1, the connection between IH
enc and IL

enc is the compression codec (e.g.
BPG or JPEG), which compresses IH

enc into IL
enc. We denote the compression between IH

enc
and IL

enc as the compression proxy. In general, compression codecs could be categorized
into two groups: deep-learning-based codec and traditional codec. Since the deep-learning-
based codec is differentiable, it can be simply integrated with the encryption and decryp-
tion processes to construct an end-to-end framework, where the learning can be performed
straightforward via back-propagation. In contrast, for traditional codecs, some operations
(e.g. quantization in JPEG) are not differentiable, so the model training via backpropaga-
tion now becomes non-traceable. To enable end-to-end optimization even when using the
traditional codecs, we propose two strategies as described below.
Strategy I. The first strategy is to directly train an autoencoder-based simulation network
to mimic the compression function via learning to reproduce the outputs of the traditional
codec. Given a pair of uncompressed and compressed image

(
IH , IL

)
, where IL is produced

LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION 5

by a specific traditional codec, the simulation network takes IH as input and outputs a simu-
lated compressed image ISL via optimizing the the error between the ISL and IL.

Ideally, this pretrained simulation network could be considered as a differentiable version
of the corresponding traditional codec, and should be capable of being smoothly integrated
into our framework as the deep-learning-based codec. However, it is difficult to guarantee the
approximation of any traditional codec by using the simulation network, as there exists quite
a few highly-complex and nonlinear operations in the traditional codec. Therefore, there
would be a discrepancy between the output of simulation network ISL and the one obtained
from the corresponding traditional codec IL, in which it leads to problematic model training
and even reduces the performance during testing.

To handle this issue, we propose a skip-component, which aims to keep the input signal
of the decryption decoder D identical in both training and testing stages. To be specific,
we design a pipeline which utilizes both simulation network and traditional codec during the
training stage (as illustrated in the left of Fig. 2). Given an encoded image IH

enc, the simulation
network and the traditional codec output the corresponding compressed images ISL

enc and IL
enc

respectively. The skip-component performs subtraction between IL
enc and ISL

enc, and add the
difference ∇ = IL

enc− ISL
enc back to ISL

enc:

ISL
enc +∇ = ISL

enc +(IL
enc− ISL

enc) = IL
enc. (1)

Based on this specific design of skip-component, the input for the decryption decoder D is
always be IL

enc no matter it is for training or testing. In other words, the decryption decoder
D would learn to extract hidden information from the compressed image which is exactly
produced by the traditional codec. Moreover, now the pretrained simulation network is no
longer fixed, but needs to be updated via a loss function Lsim by using the error between ISL

enc
and IL

enc since they are the actual pair compressed from IH
enc:

Lsim =
∥∥ISL

enc− IL
enc

∥∥2
2 . (2)

Note that, when there are gradients backpropagated from the decryption side to the encryp-
tion side, they would flow along the differentiable simulation network instead of the tradi-
tional codec (as it is non-differentiable), as shown in Fig. 2. Despite that the skip-component
provides a way to eliminate the influence of the discrepancy between output of the simula-
tion network and the traditional codec, it still requires additional effort to train the simulation
network. Therefore, we propose the second strategy to avoid training the simulation network.
Strategy II. Without the simulation network, we simplified the process and directly feed
IH
enc and IL

enc into the skip-component (as illustrated in the right of Fig. 2), where now the
difference between IL

enc and IH
enc is taken into consideration as:

∆ = IL
enc− IH

enc,

IH
enc +∆ = IH

enc +(IL
enc− IH

enc) = IL
enc.

(3)

In comparison to the Strategy I, the proposed Strategy II has the same advantage as decoder
D always takes the input from IL

enc, but is even more straightforward and simple, without
requiring the simulation network anymore. However, we observe that the Strategy I can be
further improved if the simulation network can better approximate the traditional codec,
which is also an interesting research direction. Therefore, we study both strategies and
compare their results together to provide insight from different perspectives for future work.

6 LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION

Despite the different design, during the testing stage, both Strategy I and Strategy II
follow the same workflow sequentially as shown in Fig. 1: 1) Encoder E hides the residual
IR into the original image IH and outputs the encoded image IH

enc; 2) IH
enc is fed into the

compression codec to obtain its compressed version IL
enc; 3) After receiving IL

enc, the decoder
D extracts the information hidden in IL

enc, and then uses it to reconstruct the final output I′H .

3.4 Objective Function
In this section, we describe the overall objective function used in our proposed framework.
Reconstruction Loss. Our goal is to recover the original image IH in the end, so we adopt
the reconstruction loss Lrec on the output of the decryption process, i.e. I′H . Since our
model is now end-to-end trainable, the loss applied on I′H not only encourages the decryption
decoder D to reconstruct the original image IH , but also guides the encryption encoder E to
properly encode the residual IR according to the compression codec used in the compression
proxy. The reconstruction loss Lrec is defined as:

Lrec =
∥∥I′H − IH∥∥2

2 . (4)

Consistency Loss. In addition, we hope that the encoded image IH
enc still well preserves

the structure and content of the original image IH since we are motivated by the idea of
hiding residual, i.e. steganography. We hence have the consistency loss Lcon as a regulariza-
tion term, which encourages the encryption encoder E to hide the residual IR in IH without
producing large deformation onto the image:

Lcon =
∥∥IH

enc− IH∥∥2
2 . (5)

Note that we do not further encourage IL
enc to be close to IL since we already utilize the above

consistency loss to regularize IH
enc, as the difference between IH

enc/IL
enc and IH /IL is made by

the same compression codec. The overall objective Ltotal of our framework is defined as:

Ltotal = λLrec +Lcon, (6)

where the hyper-parameter λ is the weight to balance two losses. Since Lcon only acts as
a regularization, we set a larger weight for λ equal to 5 in all the experiments. We use
Adam [10] optimizer with learning rate of 10−4 and train our model for 100 epochs.

4 Experimental Results
Here we first introduce the datasets and the evaluation metrics utilized in our experiments.
We then detail the settings of the compression codecs, and finally present quantitative and
qualitative results of our method for boosting image compression, with comparisons to sev-
eral baselines. All the source code and models will be made available to the public.

4.1 Datasets and Evaluation Metrics
Datasets. Two datasets are used in the experiments, Kinetics and Kodak. Kinetics is used
for both training and testing, while Kodak is for testing only:

Citation
Citation
{Kingma and Ba} 2014

LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION 7

• Kinetics [9]: Kinetics is a high-quality and large-scale dataset collected from YouTube,
which is composed of over 650K video clips about human activities in reality. We sam-
ple two non-overlapping subsets of Kinetics for training and testing, respectively. The
training set consists of 10,128 images in 1093 videos over 391 classes, and the testing
one contains 3253 images in 345 videos over 345 classes.

• Kodak [11]: We also use the Kodak dataset only for the testing purpose. Kodak con-
sists of 24 lossless images and is commonly used for evaluating image compression.

Metrics. We adopt PSNR and SSIM [18] as our quantitative metrics, which are commonly
used in most research works on image compression.

4.2 Experimental Settings
We conduct experiments on several traditional image coding standards (JPEG, JPEG2000,
and BPG) as well as the deep-learning-based codecs (CAE-B, CAE-P, and RNN) under two
types of evaluation settings. Two baseline models are used for making the comparison: (1) an
artifact-removal network DnCNN [19] which is widely used to reduce the distortions caused
by compression, and (2) an image restoration model MemNet [14] which performs restora-
tion (e.g. JPEG de-blocking) on the Y channel in the YCbCr color space. We also provide
comparisons of our model to an end-to-end compression framework [8] in the supplementary
material as its experimental setting is different from ours.
Compression Codecs. There are three deep-learning-based compression codecs: CAE-
B [20], CAE-P [20], RNN [15], and three traditional based codecs: JPEG, JPEG2000, and
BPG, used in our experiments. Since the coding of each codec is very different, we catego-
rize them into two groups: stable group and dynamic group. Stable group contains CAE-B,
RNN, and JPEG2000, in which the bpp (bit per pixel) is the same when the compression
quality is fixed. Dynamic group consists of CAE-P, JPEG, and BPG, in which the bpp
varies under a fixed compression quality. The varying bpp is caused by the coding algorithm
inside the codec, such as entropy coding. Different images would lead to different bpp ac-
cording to the structure and details of the image content. Please note that since our model
would somewhat change the details (by hiding residual) of the original image, the bpp of the
compressed encoded image (i.e. IL

enc) increases a bit.
Simulation Network. As mentioned in Section 3, we have tried to simulate the functionality
of traditional codecs by using deep models. For JPEG, since its function block is simple
to implement, we follow the noise layer in HiDDeN [21] to approximate JPEG. Instead of
using the mask as proposed in [21], we re-implement the quantization operation of JPEG and
use the skip-connection technique to ensure that backpropagation can work smoothly. For
JPEG2000 and BPG, we adopt an autoencoder-based architecture composed of 8 conv-Relu
blocks without down-sampling on the image size.

4.2.1 Training Settings.

Training Settings. As our baselines are post-processing methods, the bpp variation should
be considered for those experiments based on the codecs in the dynamic group, in order to
have fair comparisons. We conduct two types of evaluation to compare our method with
baselines fairly:

– Fixed-quality, denoted as Fix-Q, is to train our model under a fixed quality (e.g. 50
for JPEG) of codecs and test on that quality (i.e. 50) as well. However, our model would

Citation
Citation
{Kay, Carreira, Simonyan, Zhang, Hillier, Vijayanarasimhan, Viola, Green, Back, Natsev, etprotect unhbox voidb@x protect penalty @M {}al.} 2017

Citation
Citation
{Kodak} 1993

Citation
Citation
{Wang, Bovik, Sheikh, Simoncelli, etprotect unhbox voidb@x protect penalty @M {}al.} 2004

Citation
Citation
{Zhang, Zuo, Chen, Meng, and Zhang} 2017

Citation
Citation
{Tai, Yang, Liu, and Xu} 2017

Citation
Citation
{Jiang, Tao, Liu, Ren, Guo, and Zhao} 2017

Citation
Citation
{Zhao} 2019

Citation
Citation
{Zhao} 2019

Citation
Citation
{Toderici, Vincent, Johnston, Jinprotect unhbox voidb@x protect penalty @M {}Hwang, Minnen, Shor, and Covell} 2017

Citation
Citation
{Zhu, Kaplan, Johnson, and Fei-Fei} 2018

Citation
Citation
{Zhu, Kaplan, Johnson, and Fei-Fei} 2018

8 LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION

Table 1: Results on the Kinetics (left) and Kodak (right) datasets with several deep-
learning-based codecs (i.e., CAE-B, CAE-P, and RNN). Bold number indicates the best and
underlined number indicates the second best performance.

Dataset Kinetics Kodak
Coding Standard CAE-B CAE-P RNN CAE-B CAE-P RNN
Bpp (bits/pixel) 0.5 2.0 0.8 2.5 0.5 1.0 0.5 2.0 0.8 2.5 0.5 1.0

PS
N

R

Original 26.162 29.835 30.978 34.108 27.990 30.822 25.494 28.774 29.677 32.797 26.890 29.512
MemNet 26.774 30.586 31.492 35.136 28.624 31.635 25.774 29.019 29.785 30.133 27.354 29.949
DnCNN 26.805 30.520 31.599 35.511 28.459 31.403 25.955 29.197 30.069 33.652 27.337 29.963
Ours 27.258 31.584 31.911 35.875 28.935 31.914 26.636 30.441 30.584 34.799 27.761 30.337

SS
IM

Original 0.799 0.892 0.924 0.965 0.851 0.914 0.740 0.858 0.888 0.953 0.769 0.861
MemNet 0.823 0.908 0.930 0.970 0.868 0.924 0.752 0.865 0.889 0.915 0.788 0.869
DnCNN 0.822 0.908 0.932 0.971 0.864 0.922 0.754 0.869 0.891 0.957 0.785 0.869
Ours 0.831 0.924 0.933 0.972 0.868 0.926 0.769 0.888 0.892 0.960 0.791 0.874

slightly create additional bpp when the codec belongs to the dynamic group. To have a fair
comparison with those artifact-removal baselines, we train and test these baselines under a
higher quality (e.g. 62 for JPEG) such that the average bpp of the compressed images is
similar to our compressed case (encoded images IL

enc).
– Fixed-bpp, denoted as Fix-BPP, is to train both our model and the baselines under a

fixed quality (e.g. 50 for JPEG), and then test them under a fixed bpp. We set the bpp of a
compressed encoded image IL

enc in our model to a fixed value, like 1.0 for JPEG. Therefore,
we actually input the corresponding compressed image IL with a lower bpp, i.e., 0.889 here
for example. Under this setting, we could make sure both the training and testing data are
the same for our model and baselines.

4.3 Quantitative Results

Deep-learning-based Codecs. We evaluate the efficacy of our model of boosting image
compression on several deep-learning-based codecs (CAE-B, CAE-P, and RNN) and make
comparisons with the baselines, as shown in Table 1. The bpp of images compressed by
CAE-B and RNN is fixed, and the value is shown in the tables. For CAE-P which belongs
to the dynamic group, we discover that the bpp of our compressed encoded image (2.527 on
average) is very close to the compressed one (2.535 on average). Therefore, we confirm that
all the deep-learning-based codec used in our experiments need not to be concerned with
the bpp issue. We can observe from the quantitative results provided in Table 1, that our
proposed model outperforms the baselines by a significant margin in terms of PSNR and
SSIM. Moreover, the results on Kodak shown in Table 1 indicate that our method can be
well generalized to the unseen dataset.
Traditional Codecs. Next, we conduct evaluation on the traditional codecs (JPEG, JPEG2000,
and BPG) in order to show our generalizability on different codecs in Table 2. Both JPEG
and BPG are in the dynamic group so that we evaluate our model under both the fixed-
quality and fixed-bpp settings, while JPEG2000 is with fixed bpp for a given quality so that
we only consider the fixed-bpp setting. In addition, as mentioned in Section 3.3, we have
two strategies to handle the non-differentiable property of traditional codec, and we evaluate
our models with both strategies, denoted as Ours-Strat. I and Ours-Strat. II respectively
in Table 2. From the results, Ours-Strat. II has a great boost in performance, and performs
consistently better than other baselines (MemNet and DnCNN) on both the Kinetics Kodak
datasets under all the codecs and settings. It shows that our proposed model indeed encodes
the residual into the original image and tries to recover it with the useful hidden information.

LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION 9

Table 2: Results on the Kinetics (left) and Kodak (right) datasets with several traditional
coding standards (i.e., BPG, JPEG, and JPEG2000). Bold number indicates the best and
underlined number indicates the second best performance.

Dataset Kinetics Kodak
Coding BPG JPEG JPEG2000 BPG JPEG JPEG2000
Mode Fix-Q Fix-BPP Fix-Q Fix-BPP Fix-Q/BPP Fix-Q Fix-BPP Fix-Q Fix-BPP Fix-Q/BPP
Quality / Bpp 30 / 0.702 - / 1.0 50 / 0.889 - / 1.0 48 / 0.50 30 / 0.702 - / 1.0 50 / 0.889 - / 1.0 48 / 0.50

PS
N

R

Original 36.404 39.271 32.640 33.826 29.292 35.373 37.084 32.059 32.749 28.575
MemNet 38.217 39.111 35.095 34.883 30.295 37.251 37.002 34.148 33.340 28.987
DnCNN 39.073 39.208 35.783 35.536 30.465 37.758 37.204 34.258 33.889 29.413
Ours-Strat. I 39.028 40.009 36.359 36.126 30.313 37.842 37.555 34.958 34.273 29.300
Ours-Strat. II 39.099 39.989 36.370 36.121 30.945 37.917 37.578 34.960 34.247 30.108

SS
IM

Original 0.967 0.965 0.919 0.923 0.818 0.951 0.944 0.918 0.903 0.754
MemNet 0.967 0.965 0.947 0.937 0.841 0.951 0.944 0.925 0.911 0.768
DnCNN 0.972 0.968 0.957 0.947 0.847 0.955 0.947 0.934 0.918 0.778
Ours-Strat. I 0.974 0.972 0.963 0.953 0.857 0.960 0.953 0.940 0.927 0.795
Ours-Strat. II 0.975 0.972 0.962 0.952 0.874 0.961 0.955 0.940 0.927 0.826

Moreover, we observe that our model with the simulation network (i.e. Ours-Strat. I) has
comparable performance with Ours-Strat. II on JPEG and BPG, but has worse results on
JPEG2000. This difference shows that the simulation network may cause our model fail to
learn effectively to hide the residual if it can not approximate the real codec well.

Figure 3: Qualitative results on the Kodak dataset. Some details are highlighted with the
zoom-in patches. We show that our proposed method produces clearer reconstruction with
more details and textures. For example, the wool on the red scarf shown in column (e) of the
last row is clearer than the others.

10 LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION

Figure 4: Example results for visualizing the original image IH and the encoded uncom-
pressed one IH

enc. For each example, the image on the left is IH and the image on the right is
IH
enc. We observe that IH

enc is with more sharpened details.

4.4 Qualitative Results

We provide some examples of original images IH , compressed images IL, results from base-
lines and our model, in Fig. 3. These results demonstrate that our model is able to recover
more image details than baselines. Especially in some cases (e.g., the details on the red
scaff in Fig. 3), both MemNet and DnCNN produce artifacts of having blurs, while the re-
sults from our model still provide sharper details. Due to the page limit, we provide more
qualitative results in the supplementary materials.

To further understand how our hiding scheme works, we visualize our encoded image
IH
enc before compression happens, i.e., encoding IH with the residual IR. In Fig. 4, we show

comparisons of IH and IH
enc. Interestingly, IH

enc looks sharper than the original image IH , where
the detailed textures are enhanced. With this observation, we could treat our hiding process
as a pre-amplified step on the original image through the encoder E, as the model knows that
there is an afterward compression process which could remove some details. Therefore, with
the enhancement on those details via adding hidden residual before compression, the decoder
D receives a more informative image and is capable of reconstructing a better output.

5 Conclusions

In this paper, we propose a framework that learns to hide the residual information during the
image compression process, for reducing the artifacts caused by compression. To this end,
we construct encryption and decryption processes, in which the former one encodes/hides
the residual into the original image for transmission, and the latter one decodes the resid-
ual back on the receiver side for boosting the output quality. In addition, our method is
end-to-end trainable and can be integrated into existing deep-learning-based codecs. For tra-
ditional codecs such as JPEG, JPEG2000, and BPG, we develop two strategies to allow our
model applicable to these codecs, while still achieving promising results. In experiments,
we provide extensive comparisons to existing artifact-removal methods under various im-
age compression codecs, and show the efficacy of the proposed framework via hiding the
residual.

LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION 11

6 Acknowledgement
This project is supported by Qualcomm technologies, Inc. (NAT-439543), MOST 110-2636-
E-009-001, and MOST 110-2634-F-009-023, Taiwan. We are grateful to the National Center
for High-performance Computing, Taiwan, for computer time and facilities.

References
[1] Tinku Acharya and Ping-Sing Tsai. JPEG2000 Standard for Image Compression: Con-

cepts, Algorithms and VLSI Architectures. 2004.

[2] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston.
Variational image compression with a scale hyperprior. In International Conference on
Learning Representations (ICLR), 2018.

[3] Fabrice Bellard. BPG Image Format. http://bellard.org/bpg/, 2014.

[4] Huibin Chang, Michael K Ng, and Tieyong Zeng. Reducing artifacts in jpeg decom-
pression via a learned dictionary. IEEE Transactions on Signal Processing (TSP), 2013.

[5] Tao Chen, Hong Ren Wu, and Bin Qiu. Adaptive postfiltering of transform coefficients
for the reduction of blocking artifacts. IEEE Transactions on Circuits and Systems for
Video Technology (TCSVT), 2001.

[6] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep con-
volutional network for image super-resolution. In European Conference on Computer
Vision (ECCV), 2014.

[7] Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou Tang. Compression arti-
facts reduction by a deep convolutional network. In IEEE International Conference on
Computer Vision (ICCV), 2015.

[8] Feng Jiang, Wen Tao, Shaohui Liu, Jie Ren, Xun Guo, and Debin Zhao. An end-to-end
compression framework based on convolutional neural networks. IEEE Transactions
on Circuits and Systems for Video Technology (TCSVT), 2017.

[9] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vi-
jayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics
human action video dataset. ArXiv:1705.06950, 2017.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
ArXiv:1412.6980, 2014.

[11] Eastman Kodak. Kodak PhotoCD dataset. http://r0k.us/graphics/kodak/,
1993.

[12] Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using very deep
convolutional encoder-decoder networks with symmetric skip connections. In Ad-
vances in Neural Information Processing Systems (NIPS), 2016.

http://bellard.org/bpg/
http://r0k.us/graphics/kodak/

12 LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION

[13] David Minnen, Johannes Ballé, and George D Toderici. Joint autoregressive and hi-
erarchical priors for learned image compression. In Advances in Neural Information
Processing Systems (NIPS), 2018.

[14] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Memnet: A persistent memory
network for image restoration. In IEEE International Conference on Computer Vision
(ICCV), 2017.

[15] George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen,
Joel Shor, and Michele Covell. Full resolution image compression with recurrent neural
networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[16] Yi-Hsuan Tsai, Ming-Yu Liu, Deqing Sun, Ming-Hsuan Yang, and Jan Kautz. Learning
binary residual representations for domain-specific video streaming. In AAAI Confer-
ence on Artificial Intelligence (AAAI), 2018.

[17] Gregory K. Wallace. The JPEG still picture compression standard. Communications of
the ACM, 1991.

[18] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing (TIP), 2004.

[19] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a
gaussian denoiser: Residual learning of deep cnn for image denoising. In IEEE Trans-
actions on Image Processing (TIP), 2017.

[20] Haimeng Zhao. Cae-p: Compressive autoencoder with pruning based on admm.
ArXiv:1901.07196, 2019.

[21] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with
deep networks. In European Conference on Computer Vision (ECCV), 2018.

