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Abstract

Human beings learn and accumulate hierarchical knowledge over their lifetime. This
knowledge is associated with previous concepts for consolidation and hierarchical con-
struction. However, current incremental learning methods lack the ability to build a con-
cept hierarchy by associating new concepts to old ones. A more realistic setting tackling
this problem is referred to as Incremental Implicitly-Refined Classification (IIRC), which
simulates the recognition process from coarse-grained categories to fine-grained cate-
gories. To overcome forgetting in this benchmark, we propose Hierarchy-Consistency
Verification (HCV) as an enhancement to existing continual learning methods. Our
method incrementally discovers the hierarchical relations between classes. We then show
how this knowledge can be exploited during both training and inference. Experiments
on three setups of varying difficulty demonstrate that our HCV module improves perfor-
mance of existing continual learning methods under this IIRC setting by a large margin.
Code is available in https://github.com/wangkai930418/HCV_IIRC.

1 Introduction
In the lifetime of a human being, knowledge is continuously learned and accumulated. How-
ever, deep learning models suffer from knowledge forgetting, also known as catastrophic for-
getting [11, 21], when presented with a sequence of tasks. Incremental learning [5, 19, 24],
also referred to as continual learning, has been a crucial research direction in computer vision
that aims to prevent this forgetting of previous knowledge in neural networks.

Another aspect of human learning is the association of new concepts to old concepts,
people construct a hierarchy of knowledge to better consolidate this information. Recently,
the IIRC (Incremental Implicitly-Refined Classification) setup [1] has been proposed as a
novel extended benchmark to evaluate lifelong learning methods in a realistic setting where
the construction of hierarchical knowledge is key. On the IIRC benchmark (see Fig. 1), each
class has multiple granularity levels. But only one label is present at any time, which requires
the model to infer whether the related labels have been observed in previous tasks. This
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Figure 1: Illustration of 3-layer hierarchy IIRC setting. New categories in each training time
are annotated by solid pointers, and the hierarchical relationships among old categories and
new categories are denoted with dashed arrows.

setting is much closer to real-life learning, where a learner gradually improves its knowledge
of objects (first it labels roses as a plant, later as a flower, and finally a rose).

Based on this benchmark, Abdelsalam et al. [1] adapted and evaluated several state-of-
the-art incremental learning methods to address this problem, including iCaRL [27], LU-
CIR [9], and AGEM [4]. However, their work does not propose an effective solution specifi-
cally designed for the IIRC problem. They do not aim to incrementally learn the hierarchical
knowledge that is important to correctly label the data in this setting. Furthermore, there are
also some other limitations in the current version of the IIRC benchmark: (i) The granularity
is limited to two layers, while in reality there are often more layers involved (see Word-
Net [22] hierarchy of ImageNet [6]). (ii) The first task always contains a large number of
superclasses, which means that the learner encounters data from most classes already in these
early stages1. This makes training relatively easy, and the proposed setup less applicable.

To overcome catastrophic forgetting under the IIRC setup, we propose a module called
Hierarchy-Consistency Verification (HCV). We aim to explicitly learn in an incremental
manner the hierarchical knowledge that underlies the data. While learning new tasks with
new super and subclasses, we automatically discover relations, e.g. the class ‘flower’ is a
subclass of ‘plant’. Next, we show how this knowledge can be exploited to enhance in-
cremental learning. Principally, in the described example, we would not use images from
‘flower’ as negative examples for the class ‘plant’ (a problem from which the methods in
[1] suffer). Next, we show how the hierarchical knowledge can be used at inference time to
improve the predictions. Based on these observations, our main contributions are:

• We propose a Hierarchy-Consistency Verification (HCV) module as a solution to the
IIRC setup. It incrementally discovers the hierarchical knowledge underlying the data,
and exploits this during both training and inference.

1The actual setup considers 10 superclasses in the first task, meaning that around 50 (of the total 100) subclasses
are seen implicitly during the first task.
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• We extend the IIRC benchmark to a challenging 3-layer hierarchy on the IIRC-CIFAR
dataset. In addition, we propose a much harder setup where the superclasses are dis-
tributed uniformly over incremental tasks to test the robustness of different methods.

• Experiments show that we successfully acquire hierarchical knowledge, and that ex-
ploiting this knowledge leads to significantly improvements of existing incremental
learning methods under the IIRC setup (with absolute accuracy gains of 3-20%).

2 Related work

2.1 Incremental learning
Incremental learning methods can be categorized into three types [5, 19] as follows.
Regularization-based methods. The first group of techniques add a regularization term
to the loss function which impedes changes to the parameters deemed relevant to previous
tasks. The difference depends on how to compute the estimation. These methods can be
further divided into data-focused [10, 14, 26, 34] and prior-focused [2, 3, 11, 13, 15, 33].
Data-focused methods use knowledge distillation from previously learned models. Prior-
focused methods estimate the importance of model parameters as a prior for the new model.
Parameter isolation methods. This family focuses on allocating different model parame-
ters to each task. These models begin with a simplified architecture and updated incremen-
tally with new neurons or network layers in order to allocate additional capacity for new
tasks. In Piggyback/PackNet [17, 18], the model learns a separate mask on the weights for
each task, whereas in HAT [28] masks are applied to the activations. This method is fur-
ther developed to the case where no forgetting is allowed in [20]. In general, this branch
is restricted to the task-aware (task incremental) setting. Thus, they are more suitable for
learning a long sequence of tasks when a task oracle is present.
Replay methods. This type of methods prevent forgetting by including data from previous
tasks, stored either in an episodic memory or via a generative model. There are two main
strategies: exemplar rehearsal [4, 9, 16, 27, 32] and pseudo-rehearsal [29, 31]. The former
stores a small amount of training samples (also called exemplars) from previous tasks. The
latter use generative models learned from previous data distributions to synthesize data.

2.2 Hierarchical classification and multi-label classification
Classification problem is normally considered that the categories are not overlapped with
each other. However, the concepts in real life are connected to each other with hierarchical
information. For example, in ImageNet [6], the categories are hierarchized by WordNet [22]
knowledge. For hierarchical classification [30], the system groups things according to an
explicit hierarchy, which is important to some applications, such as bioinformatics [7] and
COVID-19 identification [25]. Another related area is multi-label classification [35], where
each image is related to multiple labels. Multi-label classification is a generalization of
the single-label categorizing problem. In the multi-label problem there is no constraint on
how many of the classes the instance can be assigned to. While under this setup, there is
no hierarchical constraints among categories. By comparison, on the IIRC setup [1], the
hierarchical information is implicitly defined. The developed model for this problem should
be able to learn this hierarchy by itself and predict the multiple labels for each instance.
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3 Methodology
The original work that presented the IIRC setup [1] ignores the hierarchical nature of the
classes during incremental learning. Consequently, some samples are incorrectly used as
negative samples for their superclass labels, potentially resulting in a drop of performance.
Here we propose our method to incrementally learn the hierarchy and directly exploit this
information to remove said interference. Moreover, we also show how the estimated hierar-
chy can be exploited at inference time. Our method is general and can be applied to existing
methods for incremental learning that can be trained with a binary cross-entropy loss (in
experiments we will show results for iCaRL [27], and LUCIR [9]).

3.1 IIRC setup

Given a series of tasks, each task t ∈ [1,T ] is composed of data Dt from the current class set
Ct which can contain both super- and subclasses. During training of task t the model will
receive (xi

t ,y
i
t) ∈ Dtrain

t , yi
t ∈Ct where yi

t ∈ {ui
t ,v

i
t} is either the subclass ui

t or the superclass
vi

t label of the i-th sample xi
t , only one of which is present in Ct . In the proposed setup

of [1], always first the superclass is learned and later the subclass (like in Fig. 1). We will
use lowercase y for a one-hot vector, and capital Y to identify a binary vector possibly with
multiple non-zero elements. It is important to note that even if during training only a single
label yi

t is provided, during testing after task t we consider test data (xi
t ,Y

i
t )∈∪t

j=1Dtest
j where

multi-class ground-truth vector Y i
t contains the subclass and superclass label of sample xi

t (if
these are in ∪t

1Ct
2), i.e., at test time we are expected to predict all non-zero elements in Y i

t .
To make the common recognition model applied in this multi-class case, in [1] they

propose to replace the conventional cross-entropy loss by a binary cross-entropy loss:

LBCE =−∑
i
[yi

t · log(Ŷ i
t )+(1− yi

t) · log(1− Ŷ i
t )] (1)

where Ŷ i
t =Ft(xi

t) is the predicted probability vector of sample xi
t , withFt the current predic-

tion model. They apply this equation to several incremental learning algorithms. However,
it should be noted that samples can be wrongly used as a negative sample for their own
superclass, because this loss only considers the provided label yi

t .
We extend the two-layer hierarchy proposed in the original IIRC setup to three layers to

verify the effectiveness of our module in more complex scenarios. In this case, each sample
contains a three-layer label annotations Y i

t as: (subclass ui
t , superclass vi

t , rootclass wi
t ).

3.2 HCV: Hierarchy-Consistency Verification

In the previous section, we discussed that the original solution results in interference during
training. The challenge here is that the model should correctly learn the relationship between
sub classes ui

t and super classes vi
t , given only the yi

t information during training time. Here,
we propose our method that address this problem.

To overcome forgetting under the IIRC setup, we incrementally compute the class hier-
archy by estimating the relationship between old and new classes. If a new class is highly
related to an old class, we identify it as the subclass of the old class. With this estimated

2Some samples might only have a single label since the subclass label is not yet encountered during training.
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Figure 2: Illustration of our method: Hierarchy-Consistency Verification (HCV). At Phase
I, hierarchical relations between subclasses and superclasses Ht are acquired using current
data. And then at Phase II, the multi-class labels are generated for each instance. Current
model is updated with calibrated labels at training time. The hierarchical relations can be
applied during inference time as well to further improve the predictions.

hierarchical knowledge, we verify the hierarchy consistency both during training and infer-
ence time to boost the performance of the continual learning models. Our algorithm, called
Hierarchy-Consistency Verification (HCV), contains two phases which we describe in the
following (see also Fig. 2). Moreover, the learned hierarchy is also exploited at inference.

Phase I: Learning Hierarchical Relations (LHR). The mission at this stage is to estimate
the existing hierarchical relationship between subclasses ui

t and superclasses vi
t . This stage

occurs before the training of the current task. Supposing we have learned the classifier Ft−1
for all previous classes. We could use Ft−1 to classify all accessible data Dtrain

t for class yc
and produce a prediction vector pyc .

pyc =
1
N
· ∑

i|yi
t=yc

Ft−1(xi
t) (xi

t ,y
i
t) ∈ Dtrain

t (2)

where N is the number of images labeled as yc ∈Ct . If the maximum prediction value in pyc

is larger than a threshold τ , we would consider the previous class v̄i
t with the max probabil-

ity value is the superclass of class yi
t . Based on this prior knowledge learned from previous

classifiers, we could construct a hierarchical tree Ht , which consists of all hierarchical infor-
mation up to the current task t.

Phase II: Superclass Pseudo-Labeling (SPL). After learning the superclasses before train-
ing task t, we have the hierarchical tree Ht , which contains all estimated hierarchical infor-
mation up to the current task. Now we can apply this knowledge at both train and test time.

During training time, if a new class is estimated as a subclass of a specific previous su-
perclass, we assign the estimated superclass label v̄i

t as a superclass pseudo-label to the cor-
responding subclasses label yi

t (we will use the overline .̄ to identify that label is estimated).
In this way, the estimated multi-class label Ȳ i

t can be represent as:

Ȳ i
t =

{
yi

t if yi
t has no parents in the hierarchical tree Ht

yi
t ∪ v̄i

t if v̄i
t is the estimated parent of yi

t
(3)
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Then, with the new class label vector Ȳ i
t , the binary cross-entropy loss is rewritten as:

LBCE =−∑
i
[Ȳ i

t · log(Ŷ i
t )+(1− Ȳ i

t ) · log(1− Ŷ i
t )] (4)

For applying our SPL module to continual learning methods, we simply replacing the orginal
BCE loss in Eq. 1 with Eq. 4.

Inference with HCV (Infer-HCV). At inference time, if a multi-class prediction vector
is not consistent with our estimated hierarchical knowledge H, we mark it as a wrong pre-
diction (e.g. it estimates a sub and superclass combination that is not in accordance to our
hierarchical knowledge captured by H). Based on this assumption, we process each predic-
tion Ŷ i

t with Ht . If the prediction is in accordance with Ht it remains unchanged. If we need
to add labels to Ŷ i

t to make it be in accordance to Ht we do so (add subclass or superclass
label). If we need to remove labels from Ŷ i

t to reach accordance with Ht , we randomly se-
lect one of the possible solutions containing the least number of removed labels. See the
supplementary material for a visual explanation of Infer-HCV.

4 Experiments

4.1 Experimental setup

Datasets. We use the same two datasets as in IIRC [1]: CIFAR100 [12] and ImageNet [6].
For CIFAR100, we take the two-level hierarchy split IIRC-CIFAR from IIRC [1], we denote
this as IIRC-2-CIFAR. It is composed of 15 superclasses and 100 subclasses. To further
explore the performance of incremental learning methods over multi-level hierarchy, we
further extend the IIRC-2-CIFAR into a three-level hierarchy dataset IIRC-3-CIFAR with
two highest superclasses (we name them as "root"): "animals" and "plants". That accounts
2 rootclasses, 15 superclasses and 100 subclasses. For ImageNet, due to its huge amount
of data, we collect 100 subclasses according to the hierarchy proposed in IIRC [1]. In total
there are 10 superclasses and 100 subclasses (including those have no superclass labels). We
denote this dataset as IIRC-ImageNet-Subset as a simplified version of the original one. The
detailed hierarchies and task information are referred to the supplementary material.

Incremental task configurations. For IIRC-2-CIFAR, we adopt the training sequence from
IIRC [1], where the first task is with 10 superclasses, in the sequential tasks each with 5
classes. And for IIRC-3-CIFAR, we uniformly distribute the rootclasses and superclasses to
form 23 tasks in total, the first task is 7 classes and then the coming tasks are 5 for each. For
IIRC-ImageNet-Subset, we have 11 tasks each with 10 classes. Here the superclasses are
also uniformly distributed. We want to stress that the uniform distribution of superclasses
(and rootclasses) leads to a more challenging setting than proposed in the original IIRC.

Baselines and Compared methods. We compare the performance of the following vari-
ants: (1) Incremental Joint learns the model across tasks and the model has access to all
the data from previous tasks with complete information (having access to all the label anno-
tations Yt ). It serves as the upper bound for comparison. (2) ER-infinite is similar to Incre-
mental Joint but with incomplete information (only access to the current label annotations
yt ). (3) iCaRL-CNN is the original version of incremental learning method iCaRL [27]. (4)
iCaRL-norm is the adapted version of iCaRL [27] with replacement of the distance metric
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Methods iCaRL-CNN iCaRL-norm LUCIR

- + SPL + SPL
+ infer HCV - + SPL + SPL

+ infer HCV - + SPL + SPL
+ infer HCV

IIRC-2-CIFAR 28.4 32.7 35.9 24.9 29.1 31.9 28.5 33.0 34.7
IIRC-3-CIFAR 20.5 26.0 27.1 19.6 25.6 25.9 16.1 35.5 37.2

IIRC-ImageNet-Subset 28.7 29.3 31.7 28.2 29.1 31.3 23.3 26.8 28.2

Table 1: We show the average of pw-JS from comparison over three datasets with and with-
out our HCV module. + SPL means applying HCV in training stage, + Infer-HCV means
applying HCV module in inference time.

from L2-distance to Cosine similarity. (5) LUCIR is the incremental learning method LU-
CIR [9]. (6) ER is the finetuning baseline with 20 image exemplars per class as experience
replay. (7) FT is the finetuning baseline without image replay.

Implementation details. For most implementation details, we follow the IIRC configura-
tions [1]. For these three setups, we use the ResNet-32 [8] as the classification backbone.
For model training, we use SGD (momentum=0.9) as optimizer, which is commonly used
in continual learning [23]. For the IIRC-2-CIFAR and IIRC-3-CIFAR setting, the learning
rates begin with 1.0 then decay by 0.1 on the plateau of the validation performance. For
IIRC-ImageNet-Subset, the learning rate starts with 0.5 and decay by 0.1 on the plateau.
The number of training epochs is 140, 140 and 100 for IIRC-2-CIFAR, IIRC-3-CIFAR and
IIRC-ImageNet-Subset, respectively. For all these three setups, the batch size is 128 and
weight decay is 1e-5.

During training, we apply random resized cropping (of size 32×32) to both CIFAR100
and ImageNet images. Then a random horizontal flip is applied and followed by a normal-
ization. And for images replay, we keep a fixed number of 20 saved exemplars per class
by default. For evaluation, we adopt the precision-weighted Jaccard similarity (pw-JS) pro-
posed in IIRC [1], which integratedly considers both precision and recall indexes. And the
threshold τ is set to 0.6 in all experiments (except in ablation study over it).

4.2 Experimental results

HCV applied to existing methods. To verify the performance of our proposed HCV, we
apply it to iCaRL-CNN, iCaRL-norm and LUCIR. The average pw-JS value is provided in
Table 1. We conduct experiments using three different settings, that is IIRC-2-CIFAR, IIRC-
3-CIFAR and IIRC-ImageNet-Subset. On IIRC-2-CIFAR setting, with the help of our HCV
module during the training stage, the average numbers are increased by nearly 4.3% for all
three different continual learning methods. When we apply HCV also at inference time, it
further improves the consistency of final predictions achieving the average number by 3.2%,
2.8%, 1.7% for these three methods respectively. On the IIRC-3-CIFAR setting, since it is
a much harder setup for incremental learning, all these variants suffer a significant drop of
performance. LUCIR is much better compared to iCaRL-CNN and iCaRL-norm. Apply-
ing HCV in both training and inference stages helps to boost performance around 6.5% for
two iCaRL variants and 21.1% for LUCIR. IIRC-ImageNet-Subset setting has much higher
image diversity, thus it also imposes difficulties for these incremental methods. Under this
setting, LUCIR performs worse than iCaRL-CNN and iCaRL-norm even with the improve-
ment from HCV. And iCaRL-CNN works similar to iCaRL-norm but with marginally better
performance. Overall, using our proposed HCV during training and inference improves per-
formance of existing methods consistently for different settings.
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(c) LUCIR
Figure 3: Experimental results over IIRC-2-CIFAR, IIRC-3-CIFAR and IIRC-ImageNet-
Subset setups based on three methods: iCaRL-CNN, iCaRL-norm and LUCIR.

Final estimated hierarchy graph and visual examples. After learning the last task under
IIRC-2-CIFAR setup when applying our SPL module to iCaRL-CNN, we estimate the full
hierarchy and draw a subgraph with 3 superclasses in Fig. 4 (right). We can observe that
most subclasses are correctly annotated with its superclasses. However table is not correctly
annotated because its confidence (58%) does not reach the threshold. Interestingly, television
is wrongly classified as a subclass of furniture. In real life, we could also regard it as a
member of furniture and this was learned because televisions occur often in furniture scenes.
This kind of information can help human operators in annotating and verifying the dataset
hierarchy. Further, we see that house, bridge, castle are false positives, and are classified
as subclasses of vehicles. This could be because vehicles images co-occur with the house,
bridge, castle classes as their background. Finally, we also show some visual examples from
IIRC-2-CIFAR setup and in-the-wild images in Fig. 4(left).

Comparison with SOTA methods. In Fig. 3 we plot the dynamic performance changes
of different methods. The general trend on different settings are similar. Incremental Joint
always achieves the best results as an upper bound, benefiting from access to all data and
labels, while ER-infinite lacks the knowledge of full labels resulting in a worse performance.
Our proposed HCV improves existing methods consistently, but the gap between our best
and the two upper bounds (ER-infinite and Incremental Joint) is still large, which shows that
IIRC setting is a very challenging setting requiring more research.

Confusion matrices. Fig. 5 shows the confusion matrices after learning task 11 under IIRC-
2-CIFAR setup. They are from the ground truth, original continual learning methods, and
HCV applied to both training and inference time. It can be observed that after using HCV,
the redundant predictions are cleaned with our learned prior knowledge about the classes
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Images

Top-5
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predictions

Final
prediction FISH , jellyfish tablelimousine

Figure 4: Visual examples of our model applied to IIRC-2-CIFAR setup (annotated with
superclasses and subclasses) and in-the-wild images (annotated with class names). We plot
the top-5 (ranked by % percentage) predicted superclasses for each query image. We take
the default threshold τ = 0.6 to distinguish the success and failure cases. A subgraph of the
final predicted graph under IIRC-2-CIFAR setup with iCaRL method is shown on the right.
Here the top-1 predicted superclasses with percentages are listed.

(a) Ground truth (b) iCaRL-CNN (c) + SPL (d) +SPL+HCV
Figure 5: Confusion matrices of groundtruth, original continual learning methods, applying
SPL and applying Infer-HCV to iCaRL-CNN after task 11 under IIRC-2-CIFAR setup.

hierarchy, therefore HCV plays a role of a de-noising procedure for confusion matrices.

4.3 Ablation study

Ablation study over threshold τ . We conduct an ablation study on the threshold τ under
IIRC-2-CIFAR setup. In Fig. 6a, we compare the values of τ {0.4, 0.5, 0.6, 0.7} when
applying HCV on both training and inference stages. We can observe that with different
hyper-parameters, it improves over iCaRL-CNN consistently. In Fig. 6b, we show how the
hierarchy correctness score (HCS) changes with the threshold from 0.1 to 0.8, and is around
75% to 80% when τ is in the range [0.3, 0.7]. In our experiments, we set τ = 0.6 by default.

Ablation study over hierarchy correctness score (HCS). We also conduct an ablation
study over the HCS on LUCIR and ER methods as shown in Fig. 6d and Fig. 6e. The
hierarchy correctness scores for iCaRL, LUCIR, ER are 76.2%, 56.0%, 34.3%, respectively
(the HCS curves by training sessions are shown in Fig. 6c). The higher hierarchy correctness
score for iCaRL-CNN helps it achieve state-of-the-art performance on IIRC-2-CIFAR and
IIRC-ImageNet-Subset (Table 1 and Fig. 3). While LUCIR achieves a much lower score
though it is regarded as one of the best methods in continual learning [19].

We also show the performance of the LUCIR and ER methods with the ground-truth
hierarchy, which means it has a HCS of 100% (see Fig. 6d and Fig. 6e). In this case 3.0%
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(f) LUCIR with 10 orders

Figure 6: Ablation study over threshold τ , HCS and class orders on IIRC-2-CIFAR setup.

and 15.0% improvements are observed for LUCIR and ER respectively. That implies that
our HCV module can benefit from a preciser hierarchy estimation to reduce the gap to ER-
infinite. To test how a completely wrong class hierarchy influences our model, we randomly
generate a hierarchy for IIRC-2-CIFAR and apply it to ER (Fig. 6e), we can observe a drop
of HCS from 34.3% to 0.0%, and the overall performance drops for ER to nearly 7.0%.
HCV (on LUCIR) performance with 10 orders. In Fig. 6f the experiments are conducted
with all 10 task-orderings proposed in IIRC [1]. We plot the average performance. Here we
apply our SPL and Infer-HCV to the LUCIR model. We observe a significant and consistent
improvement compared to the ER baseline (≈10.0%) and the basic LUCIR method (≈8.0%).
In conclusion, our method improves the performance under various orders and settings.

5 Conclusion
In this paper, we proposed a Hierarchy-Consistency Verification module for Incremental
Implicit-Refined Classification (IIRC) problem. With this module, we can boost the existing
incremental learning methods by a large margin. From our experiments on three different
setups, we evaluate and prove the effectiveness of our proposed module during both training
and inference. And from the visualization of confusion matrices, we can also find that our
HCV module works as a denoising method to the confusion matrices. For future work, we
are interested in associating hierarchical classification, multi-label classification with IIRC
problem, thus to have a more robust model to overcome forgetting in more realistic setups.
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