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Abstract

Weakly supervised object localization (WSOL) locates the target object within an
image using only image-level labels. Recent methods try to extend the feature activation
to cover entire object regions by dropping the most discriminative parts. However, they
either overextend the activation into the background or are still limited to covering the
most discriminative parts. In this paper, we propose a novel WSOL framework that local-
izes the entire object to the right extent via contrastive learning. Our framework contains
three key components: 1) scheduled region drop, 2) contrastive guidance, and 3) pairwise
non-local block. The scheduled region drop progressively erases the most discriminative
parts of the original feature at a region-level. The erased feature facilitates the network
to discover less discriminative regions in the original feature. Then, our contrastive guid-
ance encourages the foregrounds of the original and erased features to be closer while
pushing away from each background. In this manner, the network earns the capacity to
differentiate the foregrounds from backgrounds, spreading out the activation within ob-
ject regions. Last but not least, we utilize the pairwise non-local block, which provides
an enhanced attention map to strengthen the spatial correlations between each pixel. In
conclusion, our method achieves the state-of-the-art performance on CUB-200-2011 and
ImageNet benchmarks regarding Top-1 Loc, GT-Loc and MaxBoxAccV2.

1 Introduction
Fully supervised methods [1, 4, 6, 24] have achieved remarkable performance by training a
convolution neural network (CNN) with human-annotated labels (e.g., bounding box for lo-
calization, pixel-level mask for segmentation). However, they require expensive annotation
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Image ACoL EIL Ours Image OursACoL EIL

Figure 1: Comparison of localization results with existing WSOL methods on CUB-200-
2011 [33] dataset. Both ACoL [38] and EIL [20] attempt to expand activation by discovering
complementary regions. However, they rather locate only the most discriminative parts (first,
second row) or overextend the activation to the backgrounds (last row). In contrast, ours
spread activation on the full extent of the target object without excessively expanding to the
background. The ground-truth boxes are in red and predicted boxes are in green.

costs for the target tasks. Therefore, weakly supervised approaches have been actively re-
searched over the various computer vision tasks [2, 17, 26, 28, 30, 39] due to the lower cost
to obtain weak supervision. Especially, we focus on weakly supervised object localization
(WSOL) task that conducts localization in a given image using only class labels for training.

For example, Zhou et al. [41] propose class activation mapping (CAM) that extracts a
class-specific localization map with a global average pooling layer (GAP). However, CAM
tends to focus on the most discriminative parts of the target object, degrading the localiza-
tion performance. To relieve this limitation, recent works introduce adversarial erasing (AE)
methods [13, 16, 20, 38] to spread out the activation by erasing the most discriminative parts.
These methods construct a dual-branch that one activates the most discriminative parts in the
original feature map (original branch) while the other mines the complementary regions at
the erased feature map (erased branch). However, they still concentrate class-specific local
regions or overextend the activation to the backgrounds (Figure 1).

In this paper, we propose a novel AE-based framework using dual-branch features for
mining the foregrounds to the right extent of the target object. Our framework consists of
three key elements: scheduled region drop (SRD), contrastive guidance (CG), and pairwise
non-local block (PNL). The scheduled region drop erases the most discriminative parts pro-
gressively on the original feature map at a region-level. It promotes the network to discover
less informative regions in an effective way. The contrastive guidance encourages the fore-
ground features of the dual-branch to pull together while pushing away from each back-
ground feature. This leads the model to learn the representation of the foregrounds that
distinguish from backgrounds, preventing the expansion of activations to the backgrounds.
Also, the pairwise non-local block learns the relationship between pixels in the feature map,
which accelerates the network to discover other relevant parts of the most distinctive area.
We validate that each proposed component plays an important role in improving localization
performance. Finally, we verify the effectiveness of our method throughout extensive ex-
periments, considerably outperforming the existing WSOL methods in CUB-200-2011 and
ImageNet benchmarks.
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2 Related Work

Weakly Supervised Object Localization trains a CNN classifier only using image-level
labels and extracts a CAM [41] to highlight discriminative regions. Recent methods [7, 20,
28, 38] propose adversarial erasing (AE) to expand activations from the most discrimina-
tive parts to the less discriminative regions. Hide-and-Seek (HaS) [28] divides the input
image into patches and randomly hide in training phase. Adversarial Complementary Learn-
ing (ACoL) [38] partially drops the most discriminative part to discover non-discriminative
parts. Attention-based Dropout Layer (ADL) [7] produces a drop mask for hiding the most
discriminative part and an importance map for highlighting informative region. Erasing In-
tegrated Learning (EIL) [20] integrates two branches that one with an erased feature map
and one with unerased feature map for both localization and classification. These erasing ap-
proaches incompletely eliminate discriminative parts by erasing in pixel-level through simple
thresholding. In contrast, our scheduled region drop steps further to erase the discriminative
parts at a region-level so that the model to find complementary regions efficiently. Also, we
better localize the target object utilizing additional contrastive guidance.

Contrastive Learning has drawn significant attention due to its great achievement in un-
supervised representation learning [5, 12, 21, 22, 34]. Their key idea is to maximize the
agreement between the positive samples while minimizing that of negative samples. Exist-
ing works utilize contrastive learning in various vision tasks [9, 10, 14, 18]. Recently, Ki et
al. [15] have first introduced contrastive learning in the WSOL task. They construct different
views in a single feature map to exploit contrastive loss to cover the sophisticated object re-
gion. Different from [15], we design the contrastive samples with dual-branch feature maps.
Thus, our proposed contrastive guidance loss optimizes quadruple relation (foreground and
background feature maps of the original and erased branch), utilizing complementary dis-
covered regions in the target object. It guides our network to discover the entire object to the
right extent.

3 Proposed Method

3.1 Framework Overview

As shown in Figure 2, our WSOL framework utilizes the classification network and trains it
with the contrastive guidance loss and classification loss using only class labels. The SRD
generates an erased feature map X̄, which becomes an input of the erased branch. This branch
shares the weight from the original branch. The network feed-forwards original and erased
feature maps (X, X̄) simultaneously and outputs the final feature maps (F, F̄), exploring
complementary regions. The pairwise non-local block produces the enhanced feature maps
by learning the contextual information between pixel relationships. Then, the enhanced fea-
ture maps are served as input to the contrastive guidance to compute our contrastive loss. The
contrastive guidance loss Lcg guides the network to explore the entire object regions without
spreading the activation map to the backgrounds. The final objective of our network is given
by:

Ltotal = Lorig
cls +Lerased

cls +Lcg (1)
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Figure 2: The overview of our framework. The scheduled region drop (SRD) produces the
erased feature map X̄ by progressively dropping the most discriminative parts. The pairwise
non-local block (PNL) generates an enhanced attention map considering the pixel-wise spa-
tial relationships. Finally, we compute the contrastive guidance loss Lcg that constructs the
foregrounds as positive samples and backgrounds as negative samples.

3.2 Scheduled Region Drop
Conventional WSOL methods using adversarial erasing [7, 15, 20, 32, 38] produce erased
feature maps by dropping the most discriminative parts at the pixel level. However, it is
challenging to remove the adjacent pixels to the most informative parts completely using
only pixel-level dropping. These remaining informative pixels hinder the erased branch from
discovering complementary regions (i.e., less discriminative parts of the target object).

We propose a region-level erasing strategy to remove the distinctive area more effectively.
First, we obtain an attention map A∈R1×H×W of the original feature map X by channel-wise
pooling. Then, we generate a pixel-level binary mask Mpix ∈ R1×H×W by:

Mpix = 1[A > τdrop], where τdrop = max(A)×θdrop (2)

τd denotes the maximum intensity of A times pre-defined drop threshold θd.
We generate region drop mask M by expanding each pixel in Mpix to the size of S×S

squared region. Specifically, we apply max pooling layer with a kernel size of (S,S) to Mpix.
At last, the erased feature map X̄ is produced by spatial-wise multiplication between X and
M. Both X and X̄ are fed into the afterward layers of the network concurrently, which are
sharing the weights. In addition, we observe that the fixed drop threshold θd induces the
unstable performance. The erased branch suffers from classifying at the early training phase
because of discarding the most discriminative parts in a wide range (i.e., region-level drop-
ping). To remedy this issue, we reduce the discrepancy between a dual-branch at the start of
the training by decreasing the drop threshold linearly from 1 to θd. Overall, our SRD grad-
ually increase the erasing area and successfully expand the activation to less discriminative
regions, as in Figure 3-a.
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Figure 3: (a) The changes of activation in the feature maps of the original branch (X, F) and
the erased branch (X̄, F̄). (b) The foregrounds and backgrounds of the final feature maps (F,
F̄) are projected to the embedding space for modeling contrastive guidance loss.

3.3 Contrastive Guidance
Contrastive learning [5, 12, 21, 34] aims to learn a meaningful representation by attract-
ing positive pairs while pushing their negative pairs away. Likewise, we construct the fore-
grounds as positive pairs and backgrounds as negative pairs for using this concept of con-
trastive learning (Figure 3-b).

The final feature maps (F, F̄) are encoded from the dual-branch with the original X and
erased feature map X̄, respectively. We generate the foreground and background masks (Mfg,
Mbg) by thresholding the average intensity of channel-wise pooled attention map AF as in
Section 3.2. Then, we produce foreground and background features (Ffg, Fbg) multiplied
with each mask:

Mfg = 1[AF > τfg], Mbg = 1[AF < τbg], (3)

Ffg = F�Mfg, Fbg = F�Mbg, (4)

where τfg and τbg are pre-defined thresholds. Each foreground and background feature is
projected to the normalized embedding space with the projection head. It consists of two
1x1 convolution layers with ReLU activation and outputs each 128-dimension of feature
vectors (zfg,zbg, z̄fg, z̄bg). Formally, our contrastive guidance loss is given by:

Lcg =
{

max
[
‖(zfg− z̄fg)‖2−‖(zfg− zbg)‖2 +m, 0

]
+ max

[
‖(z̄fg− zfg)‖2−‖(z̄fg− z̄bg)‖2 +m, 0

]}
,

(5)

where m denotes the margin. Our loss function encourages to reduce the distance between
the representation of zfg, z̄fg while enlarging the distance between their own backgrounds. It
allows mining diverse complementary foregrounds within the full extent of the target object.

3.4 Pairwise Non-Local Block
We utilize the pairwise non-local block [36] to strengthen pixel-wise relationships regarding
the target object region in the feature maps (F, F̄). It produces the enhanced feature maps,
which feed into the contrastive guidance and classifiers. The feature map F ∈ RC×H×W is
projected with three 1x1 convolution layers into {q,k,v} ∈ RC′×H×W which denotes query,
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key and value, respectively. The weight matrix W∈RHW×HW represents similarities between
each pixel that is obtained by whitened dot product operation of q,k:

W = σ

(
(qi−µq)

T (k j−µk)
)
, (6)

where σ is a softmax function and µq,µk are the spatial-wise average values from each pixel
i, j in q,k, respectively. Then, the enhanced feature map F′ is produced as:

F′ = F⊕h(v⊗W) , (7)

where h(·) denotes 1x1 convolution layer followed by batch normalization.
The PNL learns where to attend, considering the similarities of the class-specific regions

by optimizing the normalized difference between the query and key pixels. Therefore, they
provide informative clues to the classifier and contrastive guidance.

4 Experiments

4.1 Experiment Setup
Datasets. We evaluate the proposed method on two benchmarks: CUB-200-2011 [33], Im-
ageNet [25], which are given only image-level labels for training. CUB-200-2011 includes
200 species of bird consisting of 5,994 images for the training set and 5,794 images for
the test set. ImageNet has 1,000 classes which contains 1.2 million and 50,000 images for
training and test sets, respectively. We use CUBV2, ImageNetV2 [23] as a validation set,
following [8].
Evaluation metrics. We leverage Top-1 localization (Top-1 Loc), GT-known localization
(GT-Loc), and MaxBoxAccV2 [8] to evaluate our methods. Top-1 Loc indicates the propor-
tion of correctly classified images containing a bounding box intersection over union (IoU)
0.5 with the ground truth. GT-Loc measures the ratio, where the predicted box is consid-
ered as correct if an IoU greater than 50%. MaxBoxAccV2 [8] averages the localization
performances at three IoU criterions (0.3, 0.5, 0.7) by searching the optimal threshold for
generating bounding boxes.
Implementation details. We build our method with three backbone networks: VGG16 [27],
InceptionV3 [29], and ResNet50 [11]. All networks start training by loading ImageNet pre-
trained weights. Our PNL and CG are inserted before the classifier. We set drop threshold
θd as 0.8 for CUB dataset, and 0.9 for ImageNet dataset. Thresholds of foreground τfg and
background τbg are set to 0.9, 0.8 for VGG16 and others can be found in the supplementary
material. For inference, we only utilize the scheduled region drop with its last drop threshold
to extract the complementary region, as in [38]. Note that we follow the [3] for generating
the class activation map of the target objects.

4.2 Ablation Study
The ablation studies for the proposed components are performed with VGG16 on CUB-200-
2011 dataset. Bold texts denote the best performance.
Effects of each proposed component. We propose three components to localize the entire
target object. Table 1 shows the effectiveness of individual elements in our framework. Com-
pared to the baseline, our overall framework achieves a large performance gain with 10.12%,
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Methods SRD CG PNL MaxBoxAccV2 (%) Top-1 Loc (%)0.3 0.5 0.7 Avg
Baseline∗ [20] 7 7 7 97.58 78.91 34.64 70.38 59.87
Ours 3 3 3 99.00 88.63 53.88 80.50 65.60
− SRD 7 3 3 98.65 86.05 46.84 77.18 64.22
− CG 3 7 3 98.29 83.07 41.58 74.31 62.67
− PNL 3 3 7 98.58 86.78 47.26 77.54 63.98

Table 1: The ablation study of the main configurations of our method with VGG16 on CUB
dataset in terms of MaxBoxAccV2 and Top-1 Loc. SRD: scheduled region drop, CG: con-
trastive guidance, PNL: pairwise non-local block. Following [7, 20, 38], we use pixel-level
erasing when SRD is not applied. ∗ indicates reproduced results.

Location MaxBoxAccV2 (%) Top-1 Loc (%)
conv4_3 80.50 65.60
pool3 79.84 64.91
pool2 78.91 64.89

Table 2: Localization performance with
VGG16 on CUB dataset regarding the lo-
cation of scheduled region drop. MaxBox-
AccV2 averages the performance at three
IoU criterions.

S
1 3 5 7

θd

0.8 77.5 / 64.4 80.5 / 65.6 77.3 / 64.1 68.2 / 55.3
0.6 78.3 / 64.7 80.1 / 64.3 76.9 / 60.1 71.8 / 52.8
0.4 79.3 / 64.9 78.9 / 62.3 69.8 / 52.2 56.6 / 38.8

Table 3: MaxBoxAccV2 (%) / Top-1 Loc (%)
performance with various combination of
drop threshold (θd) and kernel size (S) in
scheduled region drop with VGG16 on CUB
dataset.

5.73% regarding MaxBoxAccV2, Top-1 Loc, respectively. Ours without the CG achieves
6.19% lower performance in terms of MaxBoxAccV2 than the full setting, and especially
degrades 12.30% at IoU 0.7. It is necessary to provide guidance on the foreground and back-
ground area of complementary feature maps in a given image to the network to localize the
entire object. SRD also improves the performance by 3.32%. Except for the PNL in our
framework, the performance decreases by 2.96%, and the degradation is the smallest com-
pared to the two elements. As a result, we show the best performance when all components
are employed.
Location and size of our SRD. First, we analyze the impact of the erasing location on
the performance. As in Table 2, we achieve the best performance when SRD is inserted
after conv4_3 layer. However, in the case of SRD located at early layers (pool2, pool3), the
performance slightly decreases. As discussed in previous works [7, 20], we note that this
is because the earlier layers extract general features, activate locally distinctive parts (e.g.,
edges, corners) in the feature map. In addition, we investigate the performance according to
different drop threshold (θd) and kernel sizes (S) of the erased region in Table 3. We show the
best performance by setting the θd to 0.8 and S to 3. The selection of smaller θd and larger
S results poor localization performance since it erases excessive information in the original
feature map. Although our SRD gradually increases the erasing area, we believe that the
erased branch suffers in optimizing contrastive guidance loss and classification loss without
sufficient clues of the target object.
Comparison with existing contrastive loss and our CG loss. Table 4 shows the results
when CG loss is replaced with conventional contrastive loss (i.e., InfoNCE loss [5, 22]).
According to experimental results, we observe that our method still surpasses the existing
state-of-the-art WSOL performances in a large margin of 7.7%, even though using InfoNCE
loss. However, it is significantly inferior to ours w/ CG (last row) at IoU 0.7. Also, the per-
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Methods MaxBoxAccV2 (%) Top-1 Loc (%)0.3 0.5 0.7 Avg
Ours (w/o CG) 98.29 83.07 41.58 74.31 62.67
Ours (w InfoNCE) 98.44 86.38 48.88 77.90 63.46
Ours† 98.79 87.50 50.19 78.89 64.21
Ours 99.00 88.63 53.88 80.50 65.60

Table 4: Ablation study of contrastive guidance (CG) loss with VGG16 on CUB dataset.
Ours† indicates that we only use the background of the original feature map as a negative
sample.

Methods CUB-200-2011 ImageNet
VGG Inc Res Avg VGG Inc Res Avg

CAM [41] 63.7 56.7 63.0 61.1 60.0 63.4 63.7 62.4
HaS [28] 63.7 53.4 64.7 60.6 60.6 63.7 63.4 62.6
ACoL [38] 57.4 56.2 66.5 60.0 57.4 63.7 62.3 61.2
SPG [39] 56.3 55.9 60.4 57.5 59.9 63.3 63.3 62.2
ADL [7] 66.3 58.8 58.4 61.1 59.8 61.4 63.7 61.7
CutMix [37] 62.3 57.5 62.8 60.8 59.4 63.9 63.3 62.2
InCA [15] 66.7 60.3 63.2 63.4 61.3 62.8 65.1 63.1
MinMaxCAM [31] 70.2 - 68.0 - 62.2 - 65.7 -
Ours 80.5 75.8 73.3 76.5 65.3 64.8 65.5 64.7

Table 5: MaxBoxAccV2 [8] comparison with the WSOL state-of-the-art methods. InCA [15],
MinMaxCAM [31] values are taken from their respective papers and the others are from [8].

formance of ours w/o CG loss seriously degrades at IoU 0.7. It indicates that our CG loss
provides adequate guidance to the network rather than the existing contrastive loss to cover
the entire object well. Moreover, we also validate the effectiveness of dual-branch in con-
trastive learning (third row). Similar to [15], Ours† only uses the background of the original
feature map as a negative sample. It shows the performance drops when the background of
the erased feature map is discarded. Consequentially, the background of the erased feature
map plays an important role to find out less discriminative parts by extending the activation
within the boundary of the target object. The detailed objective function can be found in the
supplementary material.

4.3 Comparison with State-of-the-art Methods
We compare our method with WSOL state-of-the-art methods on CUB-200-2011 and Ima-
geNet datasets in terms of MaxBoxAccV2 [8], GT-known Loc, and Top-1 Loc.

MaxBoxAccV2 [8]. In Table 5, our method outperforms all the others on CUB and Im-
ageNet datasets in terms of the MaxBoxAccV2 for three backbones. We achieve remark-
able improvement on CUB (+13.1%), and on ImageNet (+1.6%). In particular, our method
gains 15.5% over InCA [15] on CUB-InceptionV3 and 3.1% over MinMaxCAM [31] on
ImageNet-VGG16. The detailed performance at three IoU criterions can be found in the
supplementary material.

GT-known Loc and Top-1 Loc. Table 6 shows quantitative results using conventional met-
rics. On both CUB and ImageNet datasets, our method achieves the state-of-the-art perfor-
mance regarding GT-Loc, Top-1 Loc.
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Methods Backbone CUB-200-2011 ImageNet
GT-Loc Top-1 Loc GT-Loc Top-1 Loc

CAM [41] VGG16 56.00 44.15 57.72 42.80
ACoL [38] VGG16 54.10 45.92 62.96 45.83
ADL [7] VGG16 75.41 52.36 - 44.92
MEIL [20] VGG16 - 57.46 - 46.81
RCAM [3] VGG16 80.72 61.30 61.69 44.69
GCNet [19] VGG16 81.10 63.24 - -
I2C [40] VGG16 - - 63.90 47.41
Ours VGG16 88.54 65.60 65.04 48.01
CAM [41] InceptionV3 55.10 43.70 62.68 46.30
SPG [39] InceptionV3 - 46.64 64.69 48.60
DANet [35] InceptionV3 67.70 52.52 - 47.53
RCAM [3] GoogLeNet 65.10 51.05 62.76 47.70
GCNet [19] InceptionV3 75.30 58.58 - 49.10
I2C [40] InceptionV3 - 55.99 68.50 53.11
Ours InceptionV3 87.95 64.72 66.86 50.63
CAM [41] ResNet50 - 49.41 51.86 38.99
CutMix [37] ResNet50 - 54.80 - 47.30
ADL [7] ResNet50-SE - 62.29 - 48.53
RCAM [3] ResNet50-SE 74.51 58.39 64.40 51.96
I2C [40] ResNet50 - - 68.50 54.83
Ours ResNet50 85.17 69.71 66.46 52.59

Table 6: Localization performance comparison with the state-of-the-art methods.

4.4 Qualitative results

Figure 4 illustrates activation maps and estimated bounding boxes. Our method localizes on
the full object correctly and outputs tight bounding boxes compared with ground truth. We
constrain the background region using SRD and CG loss at the training phase. Therefore,
our method not only spreads out to the less discriminative parts but also suppresses the
activations on backgrounds.

Unfortunately, some challenging case exists, as in Figure 5. The reflection on the water
surface and occlusion of the target object generates either larger or smaller bounding boxes.

(a) ImageNet (b) CUB-200-2011

Figure 4: Qualitative results of our method on ImageNet and CUB-200-2011 dataset. The
ground-truth boxes are in red and predicted boxes are in green.
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(a) Reflection (b) Occlusion

Figure 5: Qualitative results of failure cases with our method on CUB dataset. The ground-
truth boxes are in red and predicted boxes are in green.

5 Conclusion
In this paper, we propose a novel WSOL framework using adversarial erasing strategy in a
dual-branch. The scheduled region drop gradually erases discriminative parts of the original
feature map using region-level dropping to capture complementary parts of the target ob-
ject. The contrastive guidance leverages foreground and background features in dual-branch
to encourage their foregrounds to be similar and penalize each corresponding background.
Also, the pairwise non-local block learns the pixel correlation of feature maps which provide
enhanced feature maps. In this way, our method allows the model to cover the right extent
of the target object. Finally, we achieve the state-of-the-art performance on CUB-200-2011
and ImageNet datasets.
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